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Introduction

According to malacological data from 36
radiocarbon dated Upper Würmian loess profiles
the first chronological unit determined from the
inferred palaeoclimatic changes embeds a period
between 32,000 – 25,000 BP years. This unit was
correlated by the Denekamp interstadial1 located at
the boundary of the Middle and Upper Pleniglacial
in Western Europe,2 and between the SPECMAP 2
and 3 isotopic stages.3 The palaeosol horizons dated
into this period can be correlated with the Stillfried
B palaeosol. According to the available
malacological data, this period can be divided into
two parts. The older phase between 32-27,000 BP
years was characterized by milder and more humid
conditions. While the younger phase representing
the period between 27-25,000 BP years was
characterized by lower temperatures and drier
conditions.

For this time period we could infer mean July
palaeotemperatures ranging around 19-20 °C in the
southern parts of the Carpathian Basin, 18 °C in the
central parts of the Great Hungarian Plains, and 17
°C in the Northern Mid-mountains and the southern
foothills of the Northern Carpathians, respectively.
This N-S trend observable in the distribution of the

                                                     
1 WEST 1988.
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temperature values is congruent with the differences
observable between the individual parts of the
country even today; i.e. a 2-3 °C difference between
the northern and southern parts. Furthermore, we
had only minimal deviations from the modern
temperature values here being in the range of 2-3
°C implying the presence of very mild conditions
between 32,000-27,000 BP years.

There were large-scale differences in the
climatic conditions observable at the micro-scale, in
accordance with the topography, as it could have
been clearly justified by the analysis of the mollusc
fauna of the palaeosol horizon of the Nagy Hill
profile at Tokaj, corresponding to this period4 as
well as the embedded charcoal remains.5 Thanks to
the versatile topographic conditions mean July
palaeotemperatures ranging between 14-17 °C
could have been reconstructed for the different
slopes characterized by different exposition. It’s
worth mentioning that from the bedrock of the
Nagy Mohos peat-bog of Kelemér6 managed to
infer a similar strong warming in the climate via the
advent of thermomesophilous deciduous arboreal
elements during this time as well. From the
palynological results7 we could have inferred mean
July palaeotemperatures of 16-17 °C in the Kelemér
valley8 during this time, which is congruent with
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the values of the mid-mountains reconstructed via
the application of the malaco-thermometer method.

According to our palaeobotanical data, a mixed
taiga dominated by spruce must have emerged in
the area of the Northern Mid-mountains and its
foothills during this time (Fig. 1.). It might be
important to know in reconstruction of the
surrounding environment of the Palaeolithic
hunters, that several Picea charcoal remains studied
by Edina Rudner9 have been recovered from the
Palaeolithic sites themselves (Bodrogkeresztúr–
Henye-tető: 26,318 ± 365 BP; Megyaszó, Szeles-
tető: 27,070 ± 680 BP; Püspökhatvan–Diós,
Öregszőlő: 27,700 ± 300 BP; Hont–Parassa
III/Orgonás: 27,350 ± 610 BP).

Results

All these data seem to underlie that the earliest
Gravettian hunting groups appearing during an
interstadial at the end of the Middle Würmian in the
Carpathian Basin10 must have populated spruce
woodlands containing thermomesophilous arboreal
elements (Carpinus – hornbeam, Salix – willow,
Alnus – alder, Betula – birch, Pinus sylvestris –
Scotch pine and possibly Corylus – hazelnut, Tilia –
elm, Quercus – oak) as well. Sporadic changes in
the dominance of shade-loving mollusc species, as
well as the scatteredness of the charcoal remains
forming major spots refer to the presence of
variegated mixed taiga woodland containing steppe
elements (forest steppe). The differences in
exposure between the slopes might have
contributed to the emergence of minor spots,
characterized by warmer conditions harbouring
thermomesophilous arboreal elements within the
spruce woodland. A modern analogy of this spruce
woodland can be found in the Altai Mts. where a
mixed spruce woodland of loose stands can be
found at lower elevations containing such elements
as Norway pine, alder, willow and oak (Quercus
mongoliensis).11 According to the data of Stieber
and Rudner-Sümegi12 this spruce woodland can be
traced within the Carpathian Basin as far as the
Transdanubian Mid-mountains, turning gradually
into forest steppes dominated by Norway pine and
birch in the southern parts of Transdanubia and the
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Danube-Tisza Interfluve. While the area of the
Hajdúság in the Tiszántúl harboured
thermomesophilous steppes at the same time.
Finally the areas of the Hortobágy, Nagykunság,
and Körös – Maros Interfluve were characterized by
floodplain areas studded by alkaline steppes. These
open vegetation areas were studded by gallery
forests running along the watercourses, and were
characterized by hydromorphic, black earth and
alkaline soils (Fig. 2.), parallel with the podzolic
soils of the Northern Mid-mountains. The area of
the Danube-Tisza Interfluve was characterized by
wind-blown sand deposition and movement as well
as the development of soils under a highly special
forest steppe vegetation composed of dominantly
Norway pines and birches. The southern parts of
Transdanubia were covered by evenly distributed
woodlands, and clear signs referring for the closure
of the arboreal vegetation could have been found in
the former fauna and flora there. To my mind,13 a
major environmental boundary must have emerged
in the center of the Carpathian Basin (Fig. 2.)
dividing it into two parts characterized by different
evolutionary histories of the vegetation. These
regional differences follow the same trends as
observable today, only the composition of the
vegetation was different from the modern one.
These differences between this former vegetation
characterized by a dominance of pines at 32,000 –
27,000 BP years, and the modern vegetation
characterized by a dominance of deciduous trees
must be attributed to the shorter growth periods and
the cooler winter temperatures during the
interstadial. Nevertheless, it’s rather surprising that
the Gravettian sites of this period are restricted to
the spruce woodlands of the Northern Mid-
mountains.

Several researchers, primarily geographers14

have questioned the reliability of our temperature
reconstruction considering them too high. They
have also debated our data referring to the presence
of thermomesophilous arboreal elements in the
vegetation, especially that of Carpinus (hornbeam)
along with the presence of two biogeographic units,
despite the fact that several archaeologists have
noted the presence of two climatic-economic units
within this relatively closed system of the
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Carpathian Basin during the Upper Palaeolithic,
based on archaeological results.15

In order to put an end on these debates, we
have attempted to compare our vegetation and
palaeoenvironmental data with those of the
neighbouring areas to disprove the hypothesis
according to which the Carpathian Basin was
nothing else but an alternation of cold and warm
desert conditions during the stadials and
interstadials of the Würmian. We have tried to
gather all the available information from coeval
archaeological (Willendorf, Dolní Věstonice,
Pavlov)16 as well as environmental historical
(pollen and macrocharcoal) sites: Lago Grande di
Monticchio,17 Les Echets,18 Lac du Bouchet,19

Grands Pile,20 Monte Cavallo,21 Korrestobel,22

Barenhöhle,23 Baumkrichen,24 Tischofer-Höhle.25

According to the gained information from the
literature, our findings can not be treated as unique
to the Carpathian Basin by any means. Since
numerous charcoal remains of Picea and those of
Pinus cembra, Larix-Picea, Pinus sylvestris,
Juniperus, Abies, Taxus baccata have been
recovered from various sites in the layers dated
between 25,000-32,000 BP years in Moravia, the
Alps and the Vienna Basin (Fig. 1.). Besides the
coniferous elements, remains of several deciduous
elements have also been retrieved (Betula, Salix,
Tilia cordata, Ulmus betulus, Populus, Fagus
silvaticus, Quercus robur, Corylus avellana)
implying the development of favourable
microclimatic conditions and a warming of the
climate. The pollen charts containing information
from this studied interstadial interval all indicated
the appearance and expansion of
thermomesophilous elements along with a strong
advent of the coniferous forms during this period.
The complex, systematic comparative
archaeological and environmental historical
investigations implemented at the sites of Pavlov
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and Dolní Věstonice26 have univocally justified the
development of gallery forests dominated by pines
but containing several thermomesophilous elements
as well at the end of Denekamp interstadial,
beginning of the Upper Pleniglacial in the valley of
the Dyje creek. While the loessy hills elevated over
the creek’s alluvium and giving the settlement site
of the Gravettian hunters was harbouring forest
steppes with loose stands of dominantly Picea
pines. Several thermomesophilous arboreal
elements also populated these pine woodlands. The
higher areas were covered by steppes containing
stands of spruce and alpine pine (Pinus cembra).

This picture is clearly congruent with the one
reconstructed for the southern foothills of the
Northern Carpathians and the Northern Mid-
mountains in the Carpathian Basin via the
investigation of charcoal, pollen, and mollusc
remains, marking the presence of mixed spruce
woodlands composed of loose stands of pines and
various thermomesophilous deciduous arboreal
elements in the mid-mountain zone of the Northern
Carpathians and probably the northern parts of the
Alps as well. The soils of the spruce woodlands
must have been affected by intensive podzolization
during this climatic stage.27 Consequently, the
distribution of the oldest Gravettian sites seems to
be closely linked to that of the spruce woodlands
(Fig. 2.).

This may refer to the development of a close-
knit relationship between the fauna and ecological
conditions of these pine woodlands and the life
strategies of the oldest Gravettian hunting groups.
In order to elucidate something about this special
relationship, we were trying to find connections
between the prey animals and the former vegetation
using information from the literature. The oldest
Hungarian Gravettian site is that of
Bodrogkeresztúr Henye-tető.28 This site yielded
numerous vertebrate bones assigned into the
Istállóskő fauna phase,29 studied by Miklós Kertzoi
and István Vörös.30 The bones recovered from a
surface of 258 m2 by Viola T. Dobosi and that of
165 m2 sampled by László Vértes were dominantly
those of wild horses, moose, mammoths and
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buffaloes, both in terms of specimen numbers and
the amounts of meat yields.31

When we have a look at the habitat preference
of the individual vertebrate species (Table 1.), we
can clearly see that the highly complex, mosaic-like
patterning in the environment inferred from the
results of malacological studies32 and
macrocharcoal analysis33 is also corroborated by the
findings on the vertebrate fauna. However, the
extraordinary proportions of steppe elements,
especially those of the wild horses calls for further
explanation. The camp site of the Gravettian
hunters at Henye tető was located in a spruce
woodland on the hill. Several drinking sites must
have been present on the underlying floodplain
along a river, which must have occupied the site of
the present-day Bodrog river, at a distance of only
1.0-1.5 km, where the herds of animals dwelling in
different habitats must have gathered increasing the
chance of a successful hunt for the humans. It is
rather interesting that the local environment of the
oldest Gravettian sites was characterized by similar
natural endowments at each and every Hungarian
site (Püspökhatvan Diós, Püspökhatvan-Öregszőlő,
Verseg, Hont Parassa I.-II.-III.)34 with a creek
valley harbouring mixed taiga woodlands
surrounded by loess-covered hills of steppes and
spruce forests, the latter giving the camp sites of the
hunters, similarly to the coeval sites along the
Morava at Dolní Věstonice and Pavlov. It’s also
worth noting that not a single artifact belonging to
the Gravettian culture has come to light from the
areas located south of the mid-mountains and the
belt of spruce woodlands within this chronological
period. This may be attributed to the low number of
excavated areas in those regions at the first sight.
Nevertheless, it is also quite interesting that no
Palaeolithic artifacts have been recovered from the
thoroughly investigated palaeosol horizons of the
numerous artificial outcrops in Southern
Transdanubia or the area of the Alföld, dated into
the Denekamp interstadial. On the other hand, as
the environmental historical data available for the
area imply, a different ecological unit characterized
by the dominance of Norway pine and birch forest
steppes must have evolved in these latter areas.35
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33 RUDNER–SÜMEGI 2001.
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According to the former anthracological studies36

there was a gradual increase in the arboreal
vegetation cover towards the southern parts of
Transdanubia characterized by the presence of such
arboreal elements as Corylus, Fagus, Quercus,
Ulmus, Fraxinus besides Pinus sylvestris and
Betula. A very similar pattern is observable in the
distribution of the individual mollusc species with
the presence of xerothermophilous elements like
Pupilla triplicata, Chondrula tridens along the
foothills of the Northern Mid-mountains,
complemented by such thermophilous forms as
Granaria frumentum, Vallonia enniensis,
Helicopsis striata in the southern parts of the Great
Hungarian Plains. While in the southern parts of
Transdanubia the deciduous woodland and forest
steppe dweller Cepaea vindobonensis and the
woodland dweller Aegopinella ressmanni also turn
up in this chronological horizon.

There was a complete turnover in the mollusc
fauna at the end of the Denekamp interstadial, and
the beginning of the Upper Pleniglacial,
characterized by a retreat but by no means complete
disappearance of the thermophilous and woodland
elements. These must have survived in the
protected refugia of the region.37 This
transformation in the mollusc fauna may refer to a
global cooling of the climate as the cold-loving
elements gave a significant part of the mollusc
faunas of the Carpathian Basin during this time
with the presence of such forms as the Boreo-
Alpine Columella columella, Vertigo modesta, V.
parcedentata and the Northern Asian, xeromontane
Vallonia tenuilabris. Representatives of the newly
identified Pupilla cf. loessica38 in Hungary have
also come to light from this horizon.39

Even though these cold-loving, open area
dwellers composed the major part of the mollusc
fauna, significant differences can be observed in
their dominance values moving from the north to
the south in the basin ( NE: >80 %, center 40-50 %,
S < 20 %). Parallel with this spatial decrease in the
proportions of the cold-loving elements, a
concomitant increase in the ratio of the mesophilous
and cold-resistant forms is observable in the fauna.

We have managed to come across specimens of
Pupilla cf. loessica everywhere in the northern
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sites, while this taxon was substituted by Pupilla
sterri in the southern parts of the basin during this
period. Thus a mean July palaeotemperature of
14 °C could have been inferred for the southern,
southwestern parts of the basin (Fig. 3.), while this
value could have gone up as high as 15-16 °C in the
southern slopes of the hills, sand dunes and the
more protected microhabitats.40 Conversely, the
reconstructed mean July palaeotemperature values
for the NE parts were much lower around 12 °C.
Moreover, even colder temperatures could have
developed in the colder, less protected valleys and
crests with a tundra-like vegetation during the
referred period.41 However, the southern slopes,
thanks to the favourable morphological conditions
must have been characterized by mean July
palaeotemperatures around 14 °C. Thanks to the
special location of the Carpathian Basin42 at the
interface of several climatic influences, several
minor protected warm spots and habitats could have
survived even during this strongest global cooling
between 25- 22,000 BP, offering a safe haven to the
cold-resistant and mesophilous elements. This
referred cold stage could have been correlated with
the Heinrich 3 event.43

This assumption is corroborated by the findings
of Stieber44 who managed to identify charcoal
remains of Pinus sylvestris, Picea, Pinus cembra,
Larix, Salix, Betula within this chronological
horizon. There is only a single radiocarbon-dated
profile known to intersect this period in Hungary
located in the areas of the Hortobágy, as the ages of
the other profiles formerly classified into the Upper
Pleniglacial was highly questioned by the newly
gained radiocarbon results. According to the
observable characteristics in the radiocarbon-dated
Hortobágy profile, the cold continental steppes of
the period must have been characterized by an
advent of such elements as Poaceae, Artemeisia,
Chenopodiaceae, with a coeval survival of the
alkaline species as well. However, among the APs
the presences of Pinus, Picea, Juniperus, Betula,
Salix and Larix could have been justified, indicating
the presence of a steppe-dominated forest steppe
vegetation in the Carpathian Basin under colder
climatic conditions. However, the deciduous
elements could have survived despite the a strong
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global warming in the areas where the milder
microclimatic conditions, attributable to the
favourable orography were combined by higher
humidity values thanks to a higher ground water
table (sand dunes, the interface of the natural levees
and alluvial plains).45 Unfortunately not a single
Palaeolithic site have been identified from this
period hampering the elucidation of the
interrelations between the Upper Palaeolithic
hunters and their surrounding environment during
the first stage of loess formation in the Upper
Würmian (25,000-22,000 BP years).

Conversely, the characteristic advent of the
Arctic elements in the vertebrate fauna marks the
development of a newer environmental historical
phase, the so-called Pilisszántó fauna stage.46 The
macrovertebrate fauna was dominated by caribou
(Rangifer tarandus), snow grouse (Lagopus mutus)
and ptarmigan (Lagopus lagopus). The
microvertebrates were dominated by Dicrostonyx,
Ochonata along with such sporadic elements as
arctic fox (Vulpes lagopus), wolverine (Gulo),
arctic vole (Microtus nivalis). Despite the efforts of
Pazonyi,47 this fauna zone could not have been
divided into further subzones thanks to the lack of
sufficient radiocarbon dates.

On the other hand, as the example of the Tokaj-
Csorgókút profile have clearly demonstrated, there
is a good chance for preparing such subdivisions in
the zonation of the Upper Würmian vertebrate
fauna, by the introduction of new finer sampling
methods, the screen washing of more deposits and
the implementation of several radiocarbon analysis
on the samples, finally leading to a complete
reevaluation of the former results. According to the
findings of investigations implemented in this
former profile of the Tokaj area, parallel with the
dominance of the Northern Asian, xeromontane48

Vallonia tenuilabris in the mollusc fauna, several
microvertebrates characteristic of the Northern
Asian and Southern Siberian cold continental
steppes could have been recorded in this horizon
(Micortus gregalis as the dominant form, plus
Lagurus, Citellus citelloides, Allactaga, Sicista).49

These data, being completely congruent with each
other, clearly indicate the appearance of the
characteristic forms of the Eastern European and
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Central Asian loess plateaux in the NE parts of the
Carpathian Basin during the times of the strongest
coolings, in proportions of no match in other parts
of the basin. This picture brings up the possibility
of the evolution of an ecological corridor between
the two areas during the strongest stadials,
microinterstadials, when the Carpathian Basin must
have formed the western margin of the Central
Eurasian- Eastern European Pleniglacial loess belt,
with a fauna poor in species but characterized by
high specimen numbers.

On the other hand, according to the findings of
the sedimentological,50 malacological,51 anthra-
cological,52 and palynological investigations of the
Upper Würmian loess profiles in the Carpathian
Basin53 the loess formation was not continuous in
this area during the Upper Würmian or the Upper
Pleniglacial as in Western Europe.54 But this strong
cooling phase was interrupted by several alternating
short warmings and coolings, lasting for some
hundred or some thousand years (microinterstadial)
which slowed down loess accumulation in the area.
The first microinterstadial was recorded at 21,000
BP years, and was characterized by an increase in
different APs (Sambucus, Pinus, Larix, Picea,
Betula, Alnus), but the preservation of the original
duality of the palaeoenvironmental conditions in the
basin. The northern parts were inhabited by mixed
taiga woodlands harbouring such elements as Picea,
Pinus cembra, Pinus mugo, Salix, Larix. While the
southern mixed taiga woodlands were dominated by
such taxa as Pinus sylvestris, Salix, Betula. These
latter elements were also present on the floodplains
in the company of some thermophilous arboreal
taxa (Quercus, Acer, Corylus). The proportions of
APs exceeded 70-80 % in the river valleys of the
Great Hungarian Plains, and the lower-lying valleys
of the mid-mountains. Conversely, alkaline
meadows must also have emerged due to edaphic
reasons in the extensive floodplain areas located
behind the gallery forest-covered river banks
(Hortobágy). The southern areas witnessed an
expansion of the thermophilous elements of the
mollusc fauna during this time (Granaria
frumentum), while the waterbank areas were
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populated by eurytpic, hygrophilous forms
requiring larger vegetation cover and inhabiting the
modern boreal woodlands as well (Clausilia dubia,
Perofratella bidentata, Arianta arbustorum, Discus
ruderatus). Conversely, the closed woodland
elements have undergone an increase in the
southwestern parts of the basin (Orcula dolium,
Vitrea crystallina). These palaeoenvironmental data
imply the survival of the formerly existing mosaic-
patterning in the environment and the flora during
this time, leading to the emergence of mixed,
extinct floral and faunal associations. However, a
characteristic increase in the dominance of the
mesophilous, forest steppe dweller Vallonia costata
is clearly observable in the majority of the profiles
for this time (Vallonia costata zonula).55

After this microinterstadial, another strong
transformation is observable in the flora and the
fauna of the Carpathian Basin characterized by the
advent of the cold, continental steppe-tundra
vegetation in the area of the Northern Mid-
mountains, dominated by Chenopodiaceae,
Artemisia, Poaceae and such Arcto-Alpine
vegetation elements as Sanguisorba officinalis,
Thalictrum, Epilobium, Polygonum bistorta,
Pleurospermum austriacum, Saxifraga
oppositifolia, S. granulata type, Ephedra fragilis
for example.56 Conversely, APs of trees and bushes
like Betula pubescens, Larix, Pinus, Juniperus have
also been recovered during this stage of the Upper
Pleniglacial from the zone of the mid-mountains.
The disappearance of the thermophilous molluscs,
concomitant with the transformations in the
vegetation as well as a retreat of the mesophilous
mollusc elements, plus the recurrent advent of the
cold-loving, cold-resistant, Boreo-Alpine, Northern
Asian steppe and tundra-like habitat preferring
molluscs (Columella columella, Vertigo geyeri, V.
genesii, V. parcedentata, V. substriata, P. sterri, P.
cf. loessica, C. nitens , Vallonia tenuilabris) as well
as their peak dominance implies the development of
a strong cooling in the climate, corresponding to the
so-called Heinrich 2 event,57 the Last Glacial
Maximum during this time in the Carpathian Basin.

Conversely, according to the findings of the
palynological58 and malacological analyses of
radiocarbon-dated profiles from the northern and
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southern areas of the basin,59 there were significant
differences in the palaeotemperatures of the
individual regions not only at a regional but a local
scale as well. The reconstructed mean July
palaeotemperatures in the southern areas of the
basin were around 14 °C, while those of the
northern parts ranged around 12 °C, as it could have
been inferred from palynological,60 and
malacological results.61 On the other hand, there
were several micro areas which were either cold
spots with palaeotemperatures below 10 °C and a
tundra vegetation or acted as warm spots with
highly deviating temperatures of 16 °C at a local
scale in the northern parts of the basin. These data
further corroborates the presence of a mosaic-like
patterning in the environment both at the regional
and at a local scale as well. Accordingly the
northern parts of the basin and the areas of the mid-
mountains must have harboured a mosaic
vegetation characteristic of the tundra/taiga
boundary today. While the southern parts must have
hosted a mix of boreal forest steppes and
continental cold steppes with such scattered
arboreal elements as Pinus cembra, Larix, Pinus
sylvestris, Betula pubescens, Salix. The local cold-
spots must have harboured Arcto-Alpine vegetation
elements, while the local warm spots or oasis62

must have hosted thermomesophilous trees and
bushes.

This picture reconstructed by us for the Upper
Würmian might be surprising for those who
previously assumed a relatively homogenous
environment for the area of the Carpathian Basin
forming a part of the Eurasian loess belt. However,
as our findings clearly demonstrated the source and
erosion, transportation and accumulation areas of
the material required for loess formation should be
by all means separated from one another.63 In the
light of our results, we must account for not only
NS but EW trends in the palaeoenvironmental
conditions of this belt as well. In our opinion, the
observed differences in the vegetation of the
Carpathian Basin must be attributed to the fact, that
the central parts of the basin must have formed the
interface of the sporadic and discontinuous
permafrost belts during the Upper Würmian
interstadials. And this must be attributed to a
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similar overlap of several climatic zones or
influences during this period to the one observable
in the basin today.

Discussion

Nevertheless, one of the fundamental goals of
our work was to clarify how these environmental
mosaics might have affected the hunting Upper
Palaeolithic Gravettian cultures in the basin. Even
though we could not gain radiocarbon dates for
each and every one of the numerous excavated
Upper Palaeolithic sites dating to the Upper
Würmian (Fig. 2.),64 the presently available
information points to the recurring appearance of
these cultural groups in the basin during both the
interstadials and stadials of the mentioned period.
Conversely, the majority of the radiocarbon-dated
Upper Palaeolithic sites seems to be restricted either
to the transitional periods between the cold and
warm waves,65 or to the period dated between
18,000 – 16,000 BP years at the end of the Upper
Würmian.

According to our findings, the species
requiring larger vegetation cover underwent an
expansion between 16,000-18,000 BP in the areas
of the Danube bend, the foothills of the Northern
Mid-mountains, as well as the southern parts of
Transdanubia, the Tiszántúl and the Danube-Tisza
Interfluve (Mastus venerabilis, Discus ruderatus,
Punctum pygmaeum, Clausilia dubia, Vestia
turgida, Macrogastra ventricosa, Aegopinella
ressmanni, Semilimax semilimax, S. kotulai, Vitrea
crystallina, Vitrina pellucida, Bradybaena fruticum,
Arianta arbustorum) becoming dominant elements
of the fauna in the studied profiles.66 Parallel with
the expansion of the woodlands elements, and those
dwelling at the border zone of the open and closed
vegetation areas, the cold-loving and open area
dwellers (Columella columella, Pupilla sterri,
Vallonia tenuilabris) experienced either a steady
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GÁBORI M.–GÁBORI V. 1957; GÁBORINÉ-CSÁNK
1970; 1978; 1984; T. DOBOSI 1967; 1975; 1989;
1993; 1994; T. DOBOSI–KÖVECSES-VARGA 1991;
CSONGRÁDI-BALOGH–T. DOBOSI 1995; DOBOSI et al.
1983; 1988; SIMÁN 1989; VÉRTES 1964-1965.

65 KROLOPP–SÜMEGI 2002.
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decrease, or completely disappeared from the
studied faunas.67

The inferred mean July palaeotemperatures
also rose to the values ranging between 14-16 °C,
compared to the 12-14 °C values of the Last Glacial
Maximum, with an average value of 15.6 °C. It’s
worth noting that the average mean July
temperature values inferred for the NE parts of
Hungary were around 15.2 °C, while those of the
sites of southern Transdanubia and Great Hungarian
Plains were 15.8 °C and 16.2 °C, respectively.
These differences and trends in the regional
temperature values are congruent with the ones
observable today.68

On the basis of an observable increase in the
dominance of the woodland dweller, hygrophilous
mollusc species, a relative warming of the climate
could have been inferred, embedding about 2000
years and characterized by a 2-3 °C rise in the mean
July palaeotemperatures, as well as a considerable
rise in the amount of the precipitation. This was
congruent with an expansion of the arboreal
elements inhabiting the woodland refugia located in
the transition zones of the Carpathian Basin
(Pannonicum) and the surrounding mountain belts69

(Carpathicum, Illyricum, Noricum70). These
marginal woodland refugia belonging to the areas
of the Precarpathicum,71 Preillyricum,72 and
Prenoricum, experienced fluctuations in space and
time in accordance with the global and regional
climatic changes, characterized by iterative
expansions and retractions (e.g. the woodland
refugium of the Kereszt Hill site).73 These
peripheric fluctuating areas74 extended into the
margins of the Pannonicum between 16,000-18,000
BP years. However, they also could have infiltrated
into the central parts of the Pannonicum via the
ecological corridors of the river valleys (e.g.
Tiszaalpár profile).75

The vegetation cover inferred from the analysis
of malacological data indicating the spreading of
woodlands has been justified by the findings of
Stieber (1967), who could infer the presence of

                                                     
67 SÜMEGI–KROLOPP 2000; 2001.
68 SÜMEGI–KROLOPP 2000.
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70 SOÓS 1943.
71 SÜMEGI 1996; DELI–SÜMEGI 1999.
72 SÜMEGI et al. 1998.
73SÜMEGI 1996.
74 VARGA 1981.
75 SÜMEGI et al. 1992.

taiga vegetation in the Carpathian Basin between
16,000-18,000 BP years via the analysis of charcoal
from deposits of the same age. Burnt charcoal zones
observed by Stieber, Pécsi and Hahn76 also indicate
the presence of an extensive taiga, as the
development of forest fires tends to follow a cyclic
pattern as well in the present-day taiga vegetation
zone especially in its southern margin characterized
by mixed forests.77 As a result of the increasing
forest cover due to a milder and wetter climate
intensive humidification initiated in the area leading
to the formation of a less- developed top soil of the
Dunaújváros-Tápiósüly Loess Complex (h1).78

According to the detailed investigations on the
Tápiósüly profile, this soil horizon can be dated
between 16.000-17.000 BP, corresponding to the
development of the Punctum pygmaeum - Vestia
turgida zonula.79

Only scant information is available for the
vertebrate fauna of the Ságvár-Lascaux interstadial,
representing the Bajothian fauna stage80 with a few
exceptions known from the archaeological layers
and archaeology of the Upper Palaeolithic
Gravettian sites.81 However, the large quantities of
caribou bones retrieved from several sites are quite
remarkable.82 The presence of these caribou bones,
serving as potential prey animals at the sites further
underlie the palaeoecological picture reconstructed
for the Carpathian Basin on the basis of the Mollusc
fauna for the period between 16,000-18,000 BP
(17,100-19,500 CAL BC), as hunting must have
taken place at the time of herd formation and
migration of the caribous.83 The migration of the
caribou is related to the alternation of the seasons as
they tend to dwell in the tundra during the
summertime and retract into the taiga belt during
the winter.84 Their migration between the two belts
or zones appears during the spring and fall.
Palaeolithic hunters specialized for the hunting of
these animals, which served as a basis of their
subsistence tended and tend to pursue the herds
throughout their migration.85 Caribous must have
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migrated between the taiga areas of the Carpathian
basin and the tundra regions surrounding the basin
from the north and the west between 16.000-18.000
BP years as well,86 because according to the latest
findings of the analysis of vertebrate remains87 the
caribous were hunted down during the winter in the
Carpathian Basin. In other words during the period
when the caribous were dwelling in the taiga zone.
The migration of the caribous to the winter taiga
zone is an annual process triggered by the lack of
food resources and unfavourable conditions of the
tundra in wintertime and the presence of lichens as
food source in relation to the coniferous vegetation
in the taiga. Thus it is not surprising that the
southern margin of the taiga zone coincides with
the southern limit of migration of the caribous.
Consequently, during the Late Würmian it was the
area of Transdanubia, or at a broader scale the
southern margins of the Carpathian Basin that
formed a southern boundary of the distribution of
caribous.88

The emergence of this interstadial also
witnessed the expansion of floral and faunal
elements characteristic of the taiga and mixed taiga
zones from the forest refugia and relict spots
surviving in the marginal areas of the embracing
mountains and the area of the Pannonicum. As a
result of this process, the marginal areas of
Pannonicum became covered with woodlands with
the emergence of a vegetation zone observable in
the southern margins of the present-day taiga.
Nevertheless, the floral and faunal assemblages
surviving among different environmental conditions
(Carpathicum, Illyricum) expanded differentially at
the northern and southern margins of the Carpathian
basin. For example it was the forest dweller
Carpathian spindle snail (Vestia turgida) that
populated the northern and eastern parts of the
basin, while the smooth spindle snail (Cochlodina
laminata) was restricted to the southern areas. The
distributions of the Carpathian-Alpian Semilimax
kotulai and the Western-Central European,89 also
Atlanto-Mediterranean,90 Semilimax semilimax
were influenced by the actual positions of the
colder but wetter Carpathian montane climate
center and the milder, more temperate and also
wetter oceanic climatic center. These differences
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tend to indicate the emergence of an environmental
barrier zone in the central parts of the Carpathian
basin during the closure of the Pleistocene.91

Most likely taiga forests with a dominance of
Picea (spruce) must have emerged in the north
while similar type of woodlands with a dominance
of Pinus sylvestris (forest pine) must have
developed in the southern areas (Sümegi 1996).
Nevertheless, on the basis of the malacological
findings the intermittence of open, steppe-like
regions must have broken down the uniform taiga
forests into mosaic-like smaller patches. Present-
day analogies of this Late Würmian taiga, mixed
taiga vegetation with intermittent patches of steppe
areas can be found today in the northern rim of the
Altai mountains, at the Kulunda-, Baraba-steppes,
The Upper-Ob floodplains and the Vasjugan
mountains, as well as the opening of the Surgut
Plains.92 Here, at the interface of the taiga and the
tundra the classical “Dokuchaevan” Eurasian floral
and pedological zones form environmental mosaics
corresponding to the local topography and
hydrography.

This former landscape of the Carpathian Basin
characterized by dominantly taiga forests, yet
displaying a mosaic-like patterning regarding
vegetation cover and soils, was one of the major
destinations of the migration of Upper Würmian
caribou herds and the Upper Palaeolithic hunters
pursuing them. According to our findings, the
hunting communities of the Gravettian culture were
practising a hunting following the seasonal
migration of caribou herds between the taiga,
steppe-taiga or taiga steppe areas of the inner
margins of the Carpathian basin and the tundra
developed in the northern and western outer
margins of the Carpathians around 16,000-18,000
BP years during the Ságvár-Lascaux interstadial.93

According to the palynological findings for the
Bátorliget, Kelemér, Hortobágy, Balatonederics and
Baláta profiles, the rate of arboraceous pollens
displayed a significant drop following the Ságvár-
Lascaux interstadial (between 16,000-18,000 BP or
17,100-19,500 CAL BC), accompanied by an
increase and dominance of plant pollens
characteristic of the steppes and open vegetation
areas (Gramineae, Cyperaceae) as well as a rise in
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the ash concentrations recording cyclic forest
burnings.

Moreover, several character forms of the tundra
vegetation was recovered from the section of the
Balatonederics profile dated to 14,240 BP, such as
Dryas octopetala, Betula nana.94 According to the
pollen composition, a colder and drier climatic
cycle emerged during this phase. This can be placed
between 13,500-16,000 BP (14,200-17,100 CAL
BC) years on the basis of radiocarbon dated pollen
analytical and quarternary malacological results.95

This climatic period seems to be well correlated
with the emergence of the so-called Heinrich event
(H1 level) of the North Atlantic regions96 and the
oldest Dryas horizon established on the basis of
palynological results.97 According to the results of
the malaco-thermometric method, the prevailing
mean July temperatures were around 12-14 °C in
the northern and eastern parts of the Carpathian
Basin,98 with a predicted value of 16 °C in the
southern areas.99

It was this horizon referred to as the Pupilla
sterri zonula100 that marked the last large-scale
appearances of cold-resistant, xerophilous,
presently xeromontane mollusc species in the
central parts of the Carpathian Basin.101 The Upper
Würmian wind-blown sands of the Nyírség and the
Danube-Tisza Interfluve, as well as the closing
member of the Hungarian loess series, the so-called
“top loess layers” emerged parallel with the
development of this colder and drier climatic
period.102This period also corresponds to the last
significant appearance of cold-loving elements in
the mollusc fauna; i.e. the typical loess steppe
dweller elements in the Carpathian Basin. The
major part of the basin was covered by cold
continental steppes studded by tundra vegetation
during this time. Besides some areas characterized
by favourable edaphic microclimatic conditions
must have harboured spots of mixed taiga
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woodlands, hosting thermomesophilous arboreal
elements as well.

Surprisingly several forest dweller species have
come to light from the loessy layers of Southern
Transdanubia and the Southern Great Hungarian
Plains from the same period (e.g.: Mastus
venerabilis, Discus perspectivus, Aegopinella
ressmanni), indicating that the development of the
flora, fauna as well as the climatic conditions must
have taken a different path in the southern parts of
the Carpathian basin from that of the northern and
eastern areas, similarly to the times of preceding
coolings and warmings as well.103 According to the
available Hungarian palynological data,104 a mean
July palaeotemperature of 13.4 – 14.2 °C could
have been inferred for this period. These data are in
good correlation with the ones gained for the mean
July palaeotemperatures of the northern areas of the
Carpathian Basin via the application of the malaco-
thermometer method.

As it can be seen from the available
radiocarbon data, this period marks the last
appearance of Upper Palaeolithic hunters related to
the Gravettian culture in the Carpathian Basin.105

However, in contrast to the earlier assumptions,106

this was the time of last occurrence of mammoth in
the basin as well.107 Most likely the steppe
vegetation favourable for the mammoth populations
was still present in a part of the basin during this
period for the last time, and was totally expelled
from the basin after 13,500 BP with its
accompanying faunal associations as a result of
initiating environmental changes connected to a
global warming. The number of Northern Asian and
Central Asian vertebrate and Mollusc elements is
surprisingly high in the loess areas of the NE Great
Hungarian Plains (Hajdúság) and the northern
foothills for this period. The malacofauna, poor in
species, seems to be in close affinity with those of
the Russian and Ukrainian loess areas.108 This
period also corresponds to the last appearance of
the Arcto-Alpine and Northern Eurasian elements
of the vertebrate fauna in the Carpathian Basin
(Elephas primigaenius, Rangifer tarandus, Ovibos);
i.e. the closing phase of the Bajothian fauna.
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All these findings along with the
palaeoenvironmental results from Bátorliget,
Balatonederics, Kelemér, Baláta and Kardoskút
seem to indicate the possible presence of a floral
and faunal migration pathway or green corridor for
the continental elements between the Eastern
European Lowland and the Great Hungarian Plains
during this time in the northern parts. Most likely it
was this corridor that offered a path for a NE retreat
of the seasonally migrating big games and the
pursuing Palaeolithic hunters following the
initiation of a Late Glacial warming.109 Meanwhile,
the southern and southwestern parts of the basin
were characterized by an expansion of woodlands.

According to the results of the detailed
malacological and palynological analysis of the
Bátorliget, Kelemér, Baláta and Balatonederics
profiles, an expansion of the taiga woodlands must
have occurred at 13,000 BP thanks to a warming
during the Late Glacial, which must have resulted
in the closure of the above mentioned continental
corridor. Nevertheless, as it was inferred from the
profiles of the Hajdúság and the Hortobágy such as
a continuous “ecological island” of extensive
continental steppes, floodplain meadows and
alkaline steppes have managed to survive in the
central parts of the Great Hungarian Plains
(Hajdúság, Hortobágy).110 Furthermore, the
elevated loess plateaux (Mezőföld, Bácska) were
characterized by the presence of local extensive
forest steppes containing open arboreal spots of
Norway pine and birch, thanks to the favourable
hydrologic and orographic conditions111 while the
foothill areas were covered by closed mixed
woodlands with elements deriving from the Illyric,
Carpathian and Transsylvanian woodland refugia.112

By this time elements characteristic of closed mixed
taiga woodlands dominated the flora and the fauna
everywhere in the basin, as it was shown by the
results of malacological,113 palynological,114

vertebrate115 and anthracological analyses.116

Several faunal (Cepaea vindobonensis: Sümegi,
1989, 1996) and floral elements (Corylus avellana:
Sárkány in Borsy et al. 1982; Willis et al. 1995;
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Juhász 2002), which underwent an expansion
during the beginning of the Holocene appear here,
marking the complete disappearance of the
background environmental conditions required for
the life of the Upper Palaeolithic hunting groups in
the basin. The presently available archaeological
data also indicates the appearance of
Epipalaeolithic, Mesolithic groups in the basin
during this time, taking over the place of the Upper
Palaeolithic hunters.117
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A FELSŐ PALEOLIT KÖZÖSSÉGEK ÉS KÖRNYEZETÜK

MODELLEZÉSE A KÁRPÁT-MEDENCÉBEN A FELSŐ WÜRM

IDEJÉN

SÜMEGI PÁL

Kulcsszavak: őskőkor, radiokarbon kormeghatározás, szedimentológia, negyedidőszaki
malakológia, paleo-környezettan

Az északkelet magyarországi löszös területek mellett az elmúlt 15 évben számos felső Würm
időszaki és késő glaciális lösz profilt vizsgáltunk a Dunántúlon és az Alföld déli és középső részén,
vagy újraértelmeztük őket az új radiokarbon koradatok birtokában. Annak ellenére, hogy a
felmelegedések és lehűlések ritmusa a felső Würm során egységes, számos jelentős különbséget
tudtunk megállapítani a vizsgált területek molluszka-faunájának összetételében.
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Figure 1.: Upper Paleolithic sites and palaeovegetation of the interstadial phase between 32,000 –
25,000 BP years

1. Upper Palaeolithic sites, 2. Palaeoecological sites, 3. Picea (spruce) remains, 4. Pinus sylvestris
(Scotch pine) remains, 5. Betula, Salix, Alnus (birch, willow, alder) remains, 6. Pinus cembra (cembra
fir) remains, 7. Abies (fir) remains, 8. Juniperus (juniper tree) remains, 9. Larix (larch tree) remains,
10. Pinus (needle leaved tree) remains, 11. Quercus (oak) remains, 12. Corylus (hazel) remains, 13.
Ulmus (elm) remains, 14. Carpinus (hornbeam) remains, 15. Fagus (beech) remains

1. ábra: Felső paleolit lelőhelyek és paleovegetáció az interstadiálisban, 32,000 – 25,000 BP évek
között
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Figure 2.: The Upper Palaeolithic sites, vegetation, July palaeoclimate, shade-loving Mollusc sites and
environmental transition line position in the Carpathian Basin between 18.000 – 16.000 BP years

1. Ecotone and shade-loving Mollusc site, 2. Upper Palaeolithic site, 3. Closed taiga forest, 4.
Northern borderline of Palaeoillyrian type mixed taiga forest, 5. July palaeotemperature, 6. Grassland

2. ábra: Felső paleolit lelőhelyek, vegetáció, júliusi középhőmérséklet, árnyék-kedvelő molluszka
fajok lelőhelyei a Kárpát-medencében 18.000 – 16.000 BP évek között
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Figure 3.: Malacostratigraphic units and palaeoenvrionmental factors between 30, 000 and 8,000 BP
years in Hungary

1. Wet climate, 2. Transition climate, 3. Dry climate, 4. Woodland, 5. Forest steppe 6. Open vegetation
(steppe or/and tundra like vegetation)

3. ábra: Malakosztratigráfiai egységek és paleo-környezetu tényezők 30, 000 és 8,000 BP évek között
Magyarország területén


