Gábor Krajsovszky Heterocyclic compounds

ISBN: 978-615-5722-01-1

© Gábor Krajsovszky

Responsible editor: Gábor Krajsovszky Publisher's reader: István Mándity Translated by Péter Tétényi

Department of Organic Chemistry
Pharmaceutical Faculty
Semmelweis University
Budapest, 2018

Acknowledgements

The editor wants to express many thanks
to Dr. István Mándity, who is Associate Professor and Director of Department of Organic Chemistry,
for the careful proofreading service of the current manuscript,
as well as to Dr. Péter Tétényi, who is Assistant Professor,
for the translation to English language.

Moreover, the editor renders many thanks to Mrs. Ferenc Juhász and Ms. Nikoletta Zlatzky laboratory assistants for drawing material of the figures.

Dr. Gábor Krajsovszky
Associate Professor
Department of Organic Chemistry

Literature used

Alan R. Katritzky, Charles W. Rees:
Comprehensive Heterocyclic Chemistry
Parts 2-3, 4-6, 7
Pergamon Press 1984
Oxford • New York • Toronto • Sydney • Paris • Frankfurt

T. Eicher, S. Hauptmann, A. Speicher: The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Wiley-VCH GmbH 2003 Weinheim

E. Breitmaier, G. Jung:
Organische Chemie
Grundlagen, Stoffklassen, Reaktionen, Konzepte,
Molekülstruktur
Georg Thieme Verlag 1978, 2005
Stuttgart • New York

Clauder Ottó:

Szerves kémia II/2. Egyetemi jegyzet Semmelweis OTE Budapest, 1980

Bruckner Győző:

Szerves kémia III-1.

Tankönyvkiadó, Budapest, 1964

Természettudományi Lexikon – Harmadik kötet

Clauder Ottó: 'Heterociklusos vegyületek' címszó, 155-161.

Főszerkesztő: Erdey-Grúz Tibor

Akadémiai Kiadó, Budapest, 1966

Szabó László:

Szerves kémia előadások - heterociklusos vegyületek Semmelweis OTE Budapest, 1978-1996

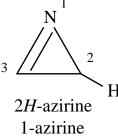
Three-, four- and five-membered heterocycles with one heteroatom and their derivatives

Three-membered heterocycles with one heteroatom and their derivatives

Nomenclature

	1 O 3	$\frac{1}{S}$	$ \begin{array}{c} H \\ N \\ 1 \end{array} $
Hantzsch-Widman name	oxirane	thiirane	aziridine
Radicofunctional name	ethylene oxide	ethylene sulfide	ethylene imine
Replacement name	oxacyclopropane	thiacyclopropane	azacyclopropane
	3 O 2 dioxirane	oxaziridine	$ \begin{array}{c} H \\ N \\ 1 \end{array} $ 2 3 $ \begin{array}{c} NH \\ \text{diaziridine} \end{array} $
0	S	H 1 N	N ()

oxirene

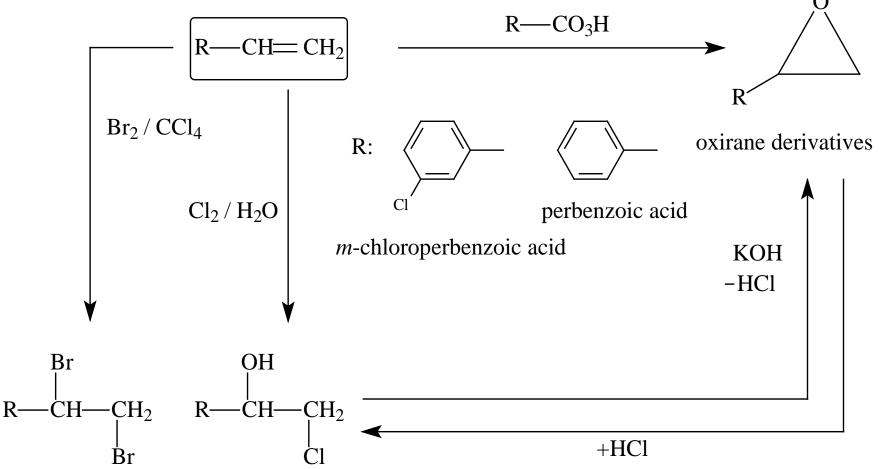


$$\frac{1}{N}$$

3

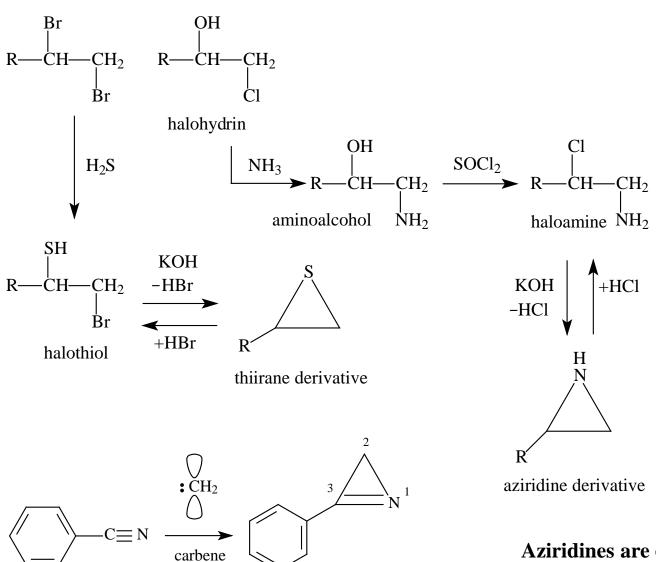
1H-azirine

1*H*-azirine 2-azirine


 $\overset{\Theta}{H_2C}\overset{\Phi}{-\!\!-\!\!-}\overset{N}{=}N$ isomers 3*H*-diazirine

diazomethane

Preparation


[2+1] intermolecular ring closure

halohydrin

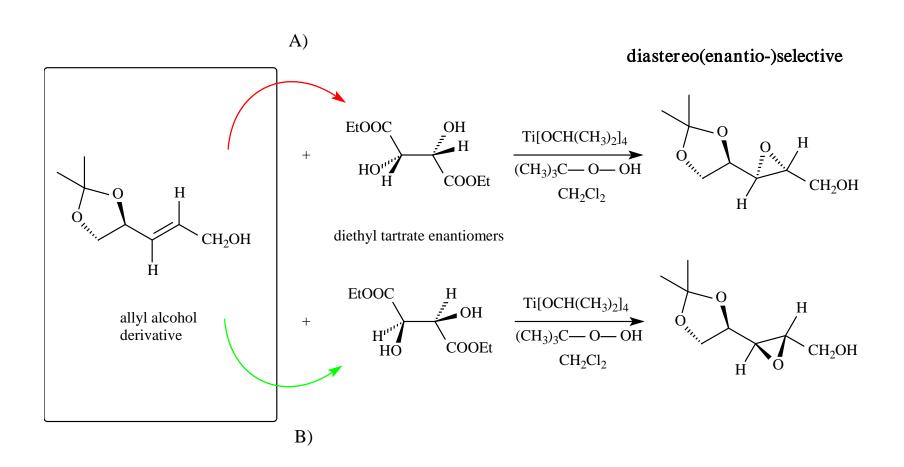
Ethylene oxide is used for gas sterilisation. It must be diluted with carbon dioxide, otherwise explosive mixture would be formed with air. Peracids are explosive, toxic compounds!

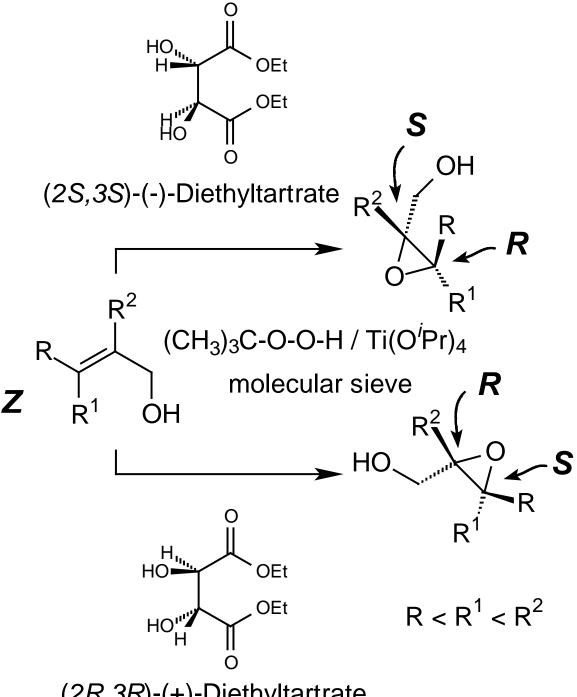
2*H*-azirine derivative

benzonitrile

e.g., CH₂N₂

Aziridines are carcinogen compounds.


Only singlet carbene (not triplet) is suitable for the reaction.


Epoxidation with peracid without catalyst

$$\begin{array}{c} O \\ H \\ CH_{3}COOH \\ CH_{3}(CH_{2})_{7} \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7} \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7}COOH \\ \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7} \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7} \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7}COOH \\ \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7} \end{array} \\ \begin{array}{c} CH_{3}(CH_{2})_{7}$$

Asymmetric oxidation of alkenes Sharpless epoxidation

Knowles, Noyori, Sharpless 2001 Nobel-prize, Chemistry, chiral catalysis

(2R,3R)-(+)-Diethyltartrate

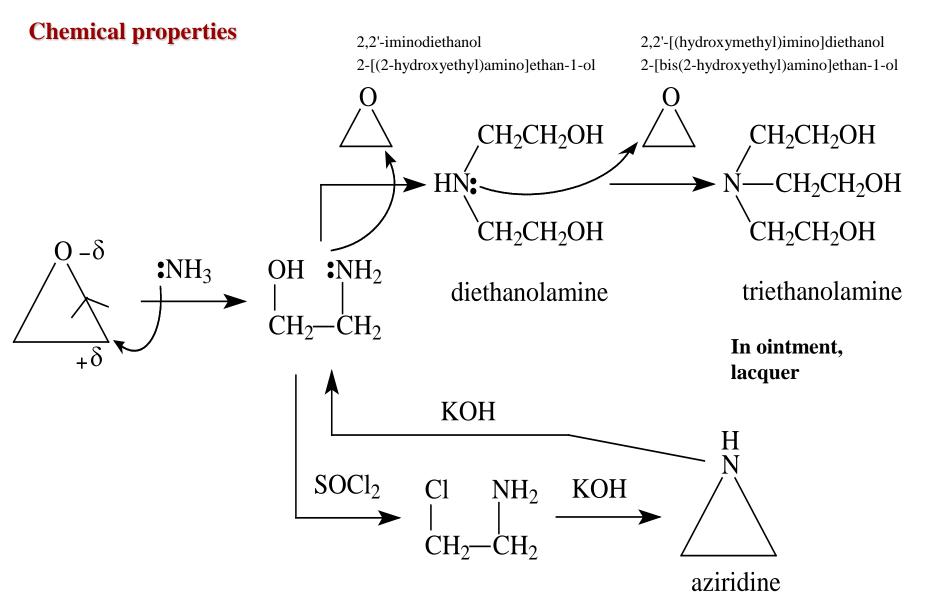
(2S,3S)-(-)-Diethyltartrate

R

OEt

OEt

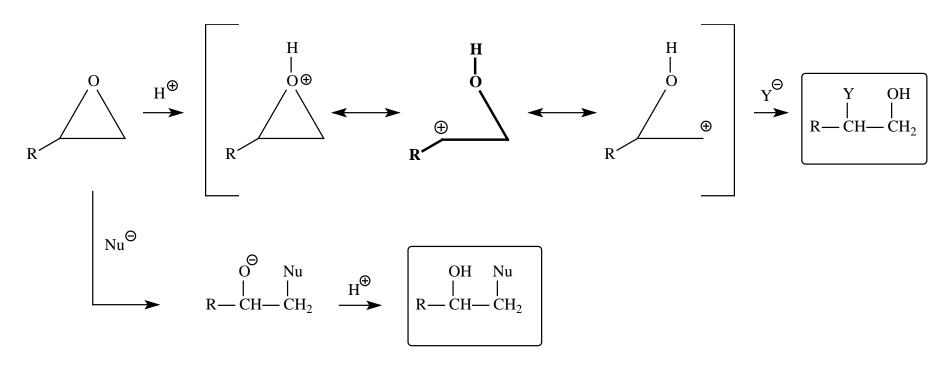
OEt

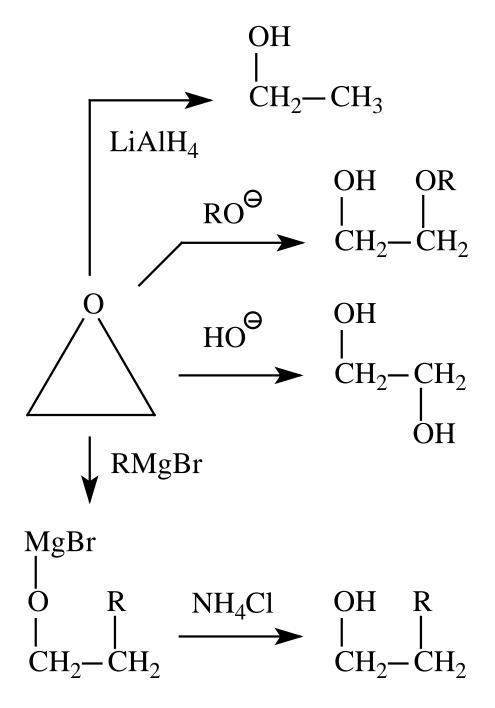

R

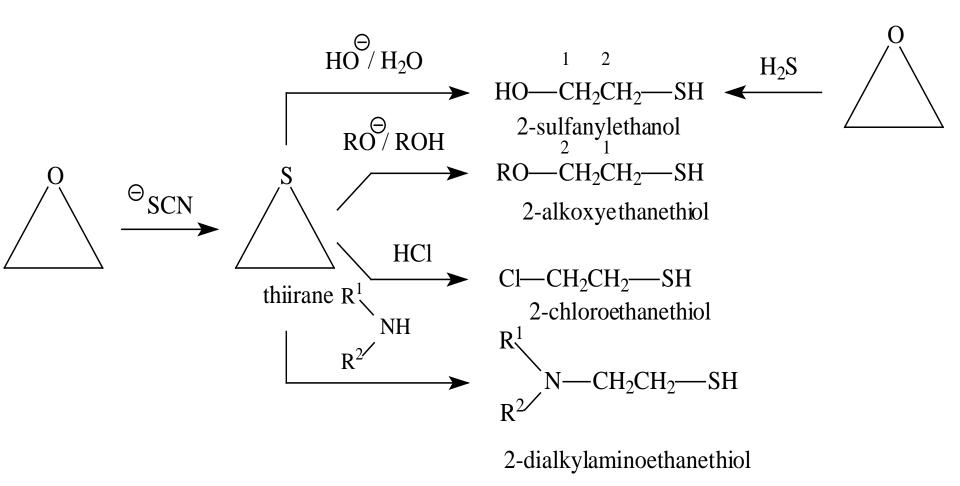
OH

R

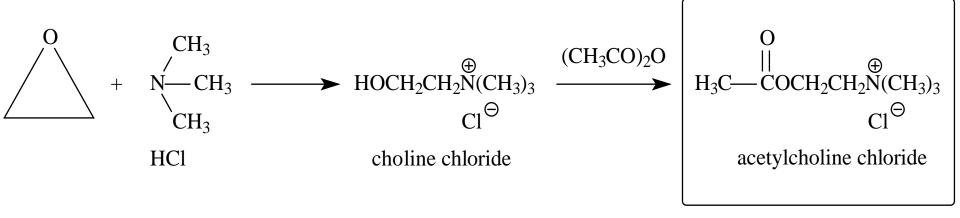
R

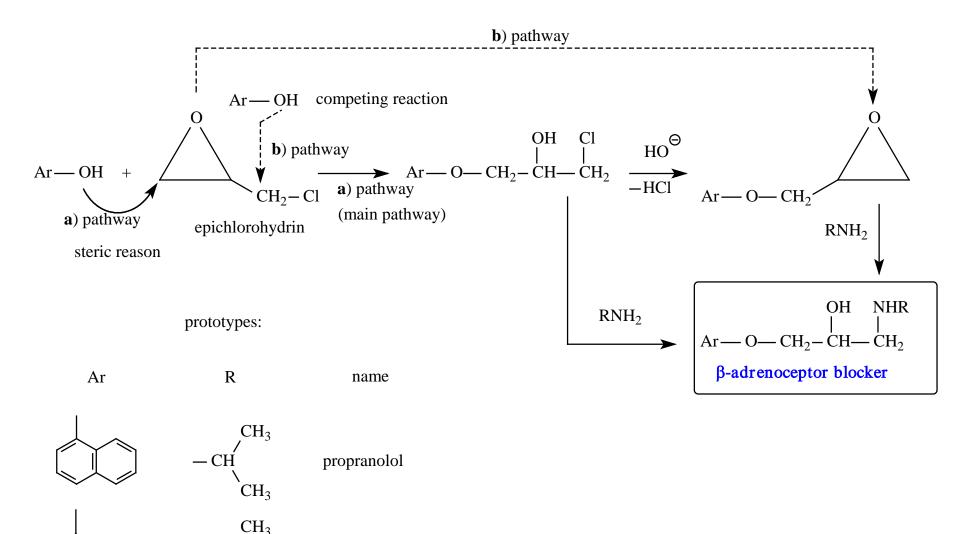

$$R^2$$
 R^2
 R^2
 R^2
 R^3
 R^2
 R^4
 R^4




Baeyer strain is greater for 3-membered rings than for 4-membered ones. As a consequence of this ring opening, reactions are easier for the former ones.

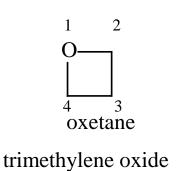
Ring opening – it may occur with acid or with base Different regiochemistry:


with acid: S_N 1-like mechanism (alkyl cation of higher order is more stable) with base: S_N 2 mechanism (for sterical reasons, the nucleophile attacks the carbon of lower order)

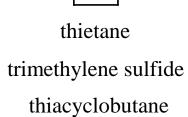


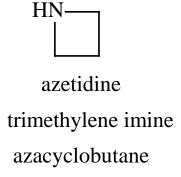
Some important derivatives

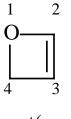
Acetylcholine: **neurotransmitter** of parasympathic nervous system (it can be found in the parasympathic part of the vegetative nervous system and in the central nervous system)

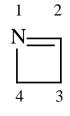


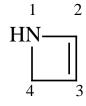
pindolol


Four-membered heterocycles with one heteroatom and their derivatives


Nomenclature


Hantzsch-Widman name Radicofunctional name Replacement name

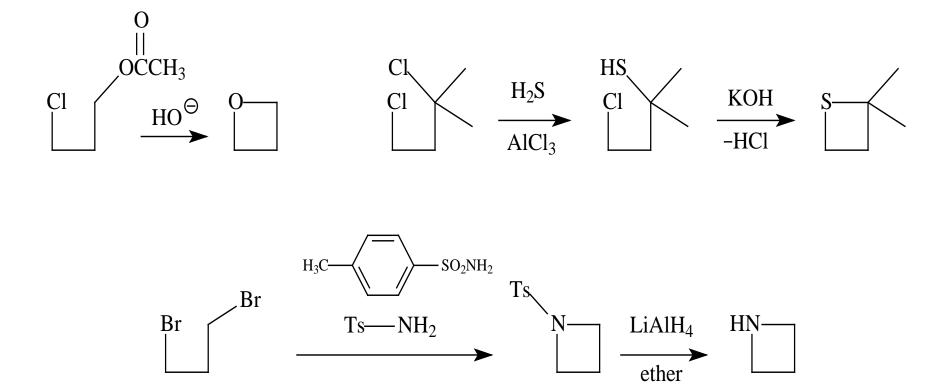

oxacyclobutane



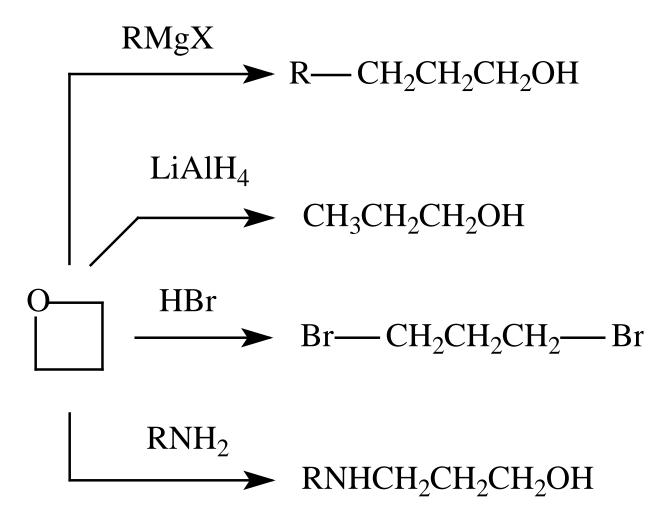
$$\begin{array}{ccc}
1 & 2 \\
N & & \\
4 & 3
\end{array}$$

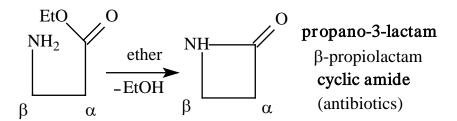
oxet(ene)

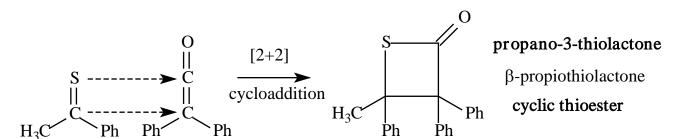
thiet(ene)


2-azetine

azet


1,2-dihydro-1,2-diazet


Preparation


By intramolecular ring closure

Chemical properties

Some important derivatives

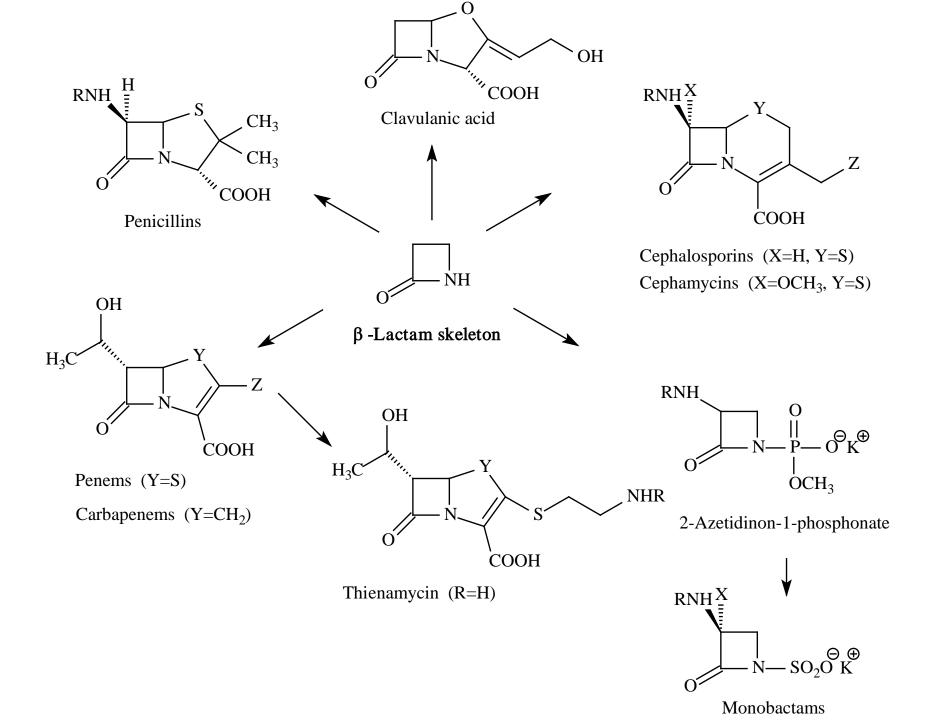
β -Lactam antibiotics

- Penicillins
- Cephalosporins

Antibiotics: natural compounds produced either by microorganisms (e.g., fungi), or by a higher organism against other microorganisms (e.g., bacteria) to block the life and reproduction of the bacteria. Antibiotics are efficient in low concentration.

 β -lactame ring of **penicillins** is sensitive to acids, bases, or penicillinase enzyme. Nowadays penicillins with broad therapeutic range also exist (see microbiology).

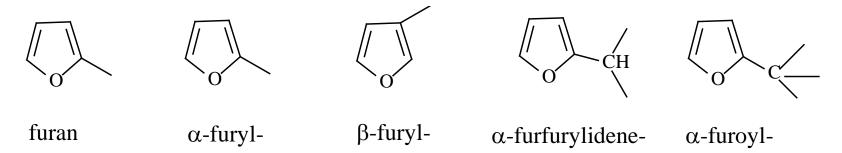
Cephalosporins (1948) makes the other main group of the β -lactame antibiotics. These are resistent to penicillinase enzyme.


The bacterium produces penicillinase/cephalosporinase enzyme in order to be resistent against the given penicillin/cephalosporin derivative. Thus, newer and newer penicillin/cephalosporin derivatives must be synthesized. Their total synthesis is possible, but it would be too expensive, thus new derivatives are produced by semisynthetic methods. The fermentation processes are combined by chemical methods (beginning of biotechnology).

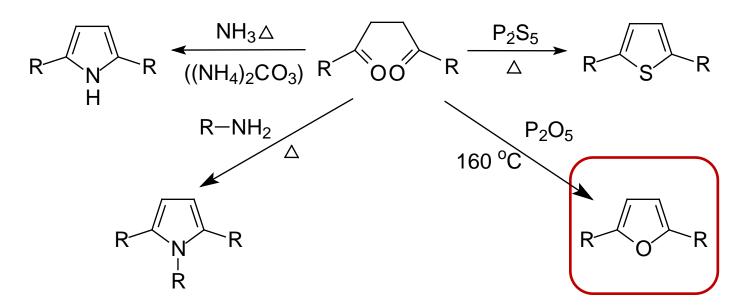
Clavulanic acid: inhibitor of the β -lactamase with low antibiotic effect. Clavulanic acid is produced by *Streptomyces clavurigeus* (the same fungus also produces penicillin as well as cephamycin).

Augmentin® contains amoxycillin and potassium clavulanate.

β-Lactam antibiotics


$$\begin{array}{c} O \\ H \\ N \\ O \\ CH_3 \end{array}$$

Five-membered heterocycles with one heteroatom and their derivatives with condensed ring systems


I/ Furan and its derivatives

Nomenclature

Preparation

1/ By Paal-Knorr synthesis from dioxo compounds

Its mechanism: E^{\oplus} : P_2O_5 , H^{\oplus}

2/ From polyhydroxy oxocompound

Found in wheat germ, corn germ

3/ From mucoic acid

4/ By decarboxylation from dehydromucoic acid

$$\begin{array}{c|c}
 & \triangle \\
 & -CO_2
\end{array}$$
OH
$$\begin{array}{c}
 & \triangle \\
 & O
\end{array}$$

5/ By ring synthesis from β -oxoester and from α -chloroketone

Feist-Benary

$$\begin{array}{c|c} & \text{aldol} \\ & \\ \hline R^2 & O & S_{N}i \\ \hline & & \\ \hline & \textbf{\textit{O-alkylation}} \end{array}$$
 EtOOC $\begin{array}{c} R^1 \\ \hline R^2 & O \\ \hline \end{array}$

This can be the side reaction of *Hantzsch* reaction

EtOOC H
$$R^{2} O \qquad + C \qquad EtOOC$$

$$R^{1} \qquad C-alkylation$$

$$R^{2} O \qquad R^{1}$$

EtOOC
$$R^3$$
-NH₂ R^2 R^3 R^3 R^2 R^3 R^3 R^3

Hantzsch

EtOOC
$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$C-alkylation$$

$$R^{2}$$

EtOOC
$$\mathbb{R}^2$$
 \mathbb{R}^1 \mathbb{R}^3

EtOOC
$$R^{1}$$

$$R^{2}$$

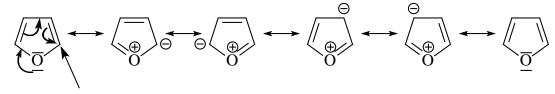
$$NH$$

$$R^{3}$$

$$N$$
-alkylation

EtOOC
$$\mathbb{R}^1$$
 \mathbb{R}^3

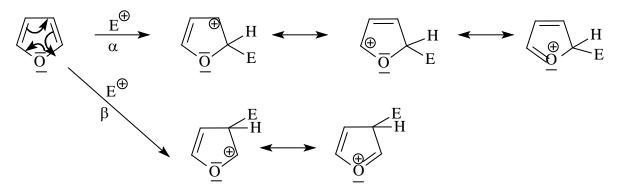
Physical properties


The parent compounds (furan, pyrrole, thiophene) are poorly soluble in water, but imidazole and pyrazole are water-soluble due to hydrogene bridges

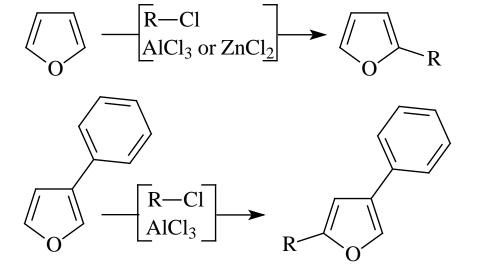
Their UV spectra are rather different from benzene IR spectra: there are group vibrations pyrrole has v NH band at 3400-3300 cm⁻¹ (sharp and strong band)

¹H NMR spectra: the signal of α H appears at lower δ value (more shielded), compared to the signal of β H (each within the usual aromatic range)

There are usual couplings typical for aromatic compounds.


Chemical properties

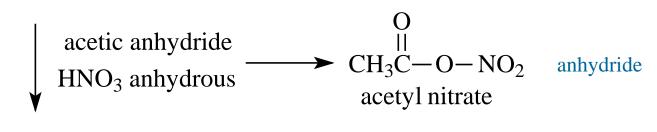
1/ S_FAr reactions


 E^{\bigoplus} attacks the α position

ground state

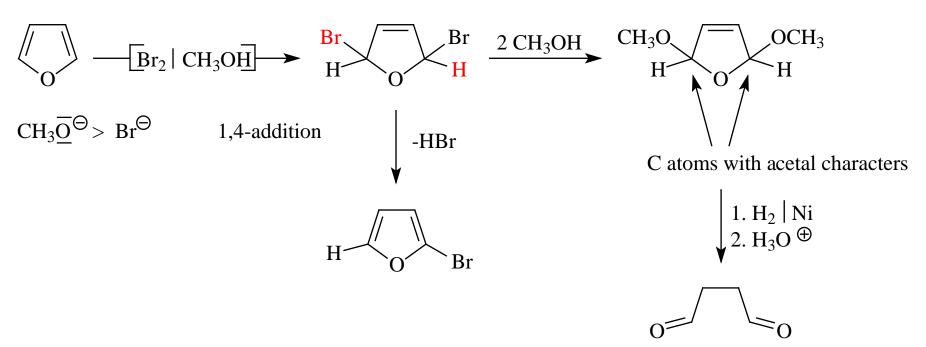
 $\alpha > \beta$ σ -complex is more stable, since more mesomeric structures can be written for it.

Friedel-Crafts alkylation


previous explanation: furan is a superaromatic compound, since the aromatic reactions take place much easier, than of benzene

current explanation: furan is much less aromatic, than benzene, since its reaction is energetically much easier, than of benzene

Nitration

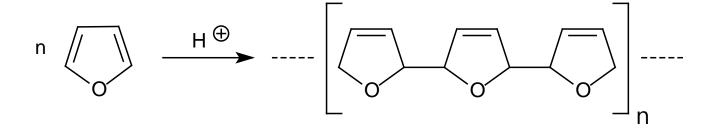

cc. HNO₃ is destroying the ring

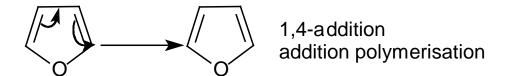
$$NO_2$$
 + O_2N O_2 NO_2

2/ Addition reactions

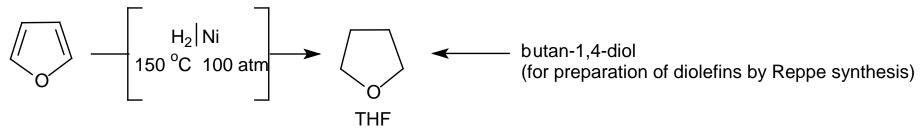
1,4-addition

Diels-Alder reaction

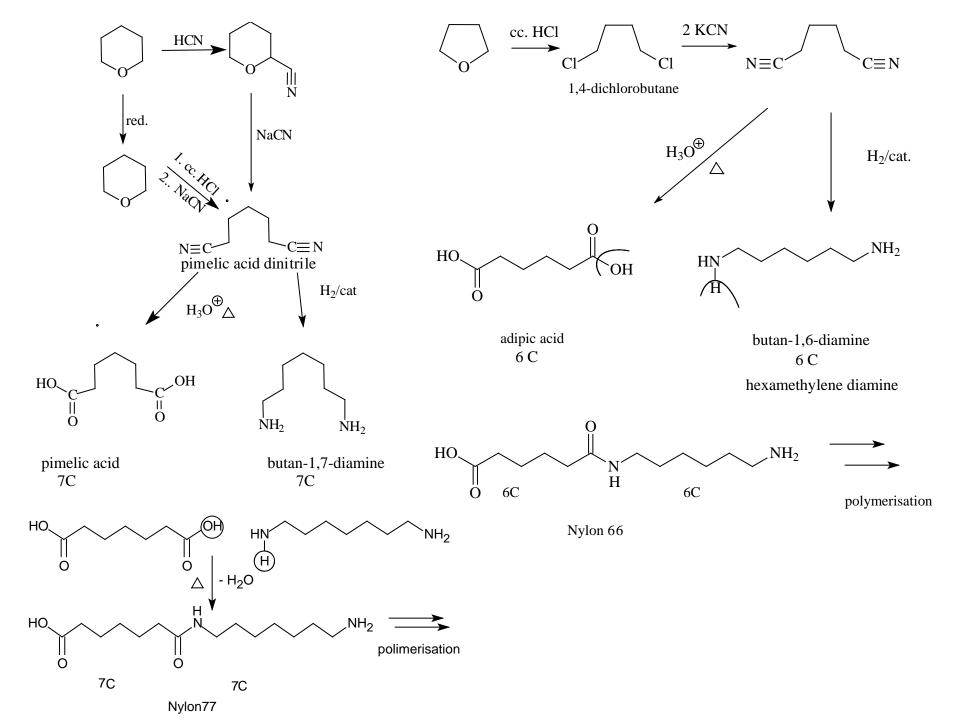

3/ Other reactions


Cannizzaro reaction

furyl (similar to benzyl)


Acyloin condensation

Polymerisation



Reduction

tetrahydrofuran

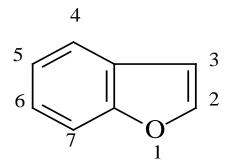
More important derivatives

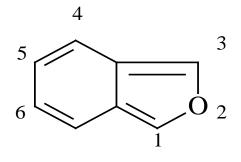
$$-H_2O$$
 O O O NH OH OH Nylon 6

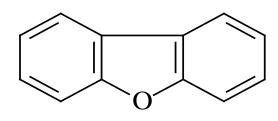
$$CH_3 \xrightarrow{H} CH_2 \xrightarrow{\oplus} CH_3)_3$$

$$\bigcup_{O} H$$

polymer plastics


$$R - C - H$$
 $+\delta$


OH
polymerisation chances


 $R - C - H$
OH
 $R - C - H$
OH
OH

II/ Furan derivatives with condensed rings

Nomenclature

benzo[*b*]furan coumarone

benzo[c]furan isocoumarone (derivatives of it are known only)

dibenzofuran diphenylene oxide

Preparations

$$\begin{array}{c|c} & & HO \\ \hline \\ OH \\ \hline \end{array}$$

O-phenylhydroxylamine

O-phenyloxime

III/ Thiophene and its derivatives

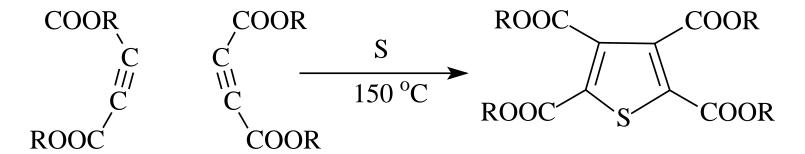
Nomenclature

Preparations

1/ By Paal-Knorr synthesis from dioxo compounds

2/ From acetylene

$$\begin{array}{ccc} CH & CH \\ /\!/\!/ & /\!/\!/ \\ HC & CH \end{array} \longrightarrow \begin{array}{c} & \\ & \\ S & \end{array}$$


3/ By dehydrogenation, then by ring closure

$$-2 \text{ H}_2\text{S} \qquad 2\text{S} \qquad -4\text{S} \qquad +3 \text{ H}_2\text{S}$$

$$-2 \text{ H}_2\text{S} \qquad 2\text{S} \qquad -\text{H}_2\text{S}$$

4/ According to Hinsberg

5/ From dialkyl acetylenedicarboxylate

Chemical properties

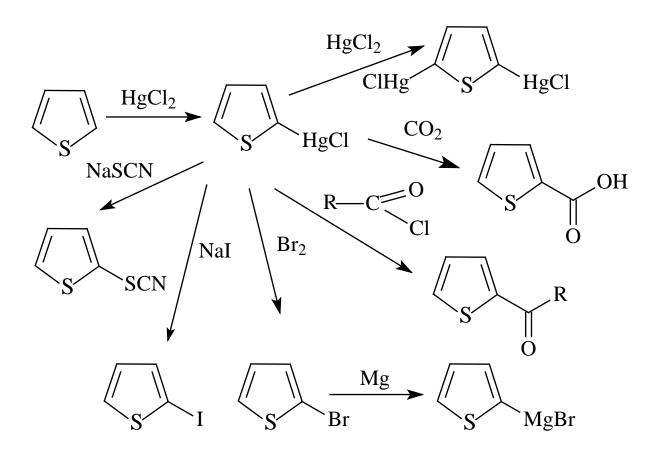
1/ By halogenation

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ S & & & \\ \hline & & & \\ S & & \\ \hline & & & \\ S & & \\ \hline & & \\ S & & \\ \hline & & \\ \hline & & \\ S & & \\ \hline &$$

2/ By chloromethylation

$$\begin{array}{c|c} & CH_2OH, HCl \\ \hline \\ S & CH_2Cl & ClCH_2 \\ \hline \end{array}$$

3/ By Mannich reaction


$$\begin{array}{c|c} & CH_2O \\ \hline & NH_4Cl \end{array} \begin{array}{c} & CH_2O \\ \hline & CH_2-NH_2 \cdot HCl \end{array} \begin{array}{c} & CH_2 \\ \hline & HN \stackrel{\oplus}{\oplus} \\ & CH_2 \end{array}$$

4/ By Vilsmeier formylation

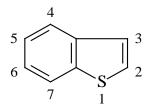
$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

5/ By Friedel-Crafts acylation

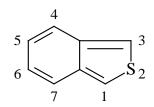
6/ Transformation to mercury derivatives

7/ By Diels-Alder (addition) reaction

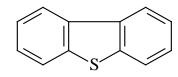
$$F \longrightarrow F \longrightarrow F \longrightarrow F$$


8/ By polymerisation

9/ By hydrogenation


10/ By indophenin reaction

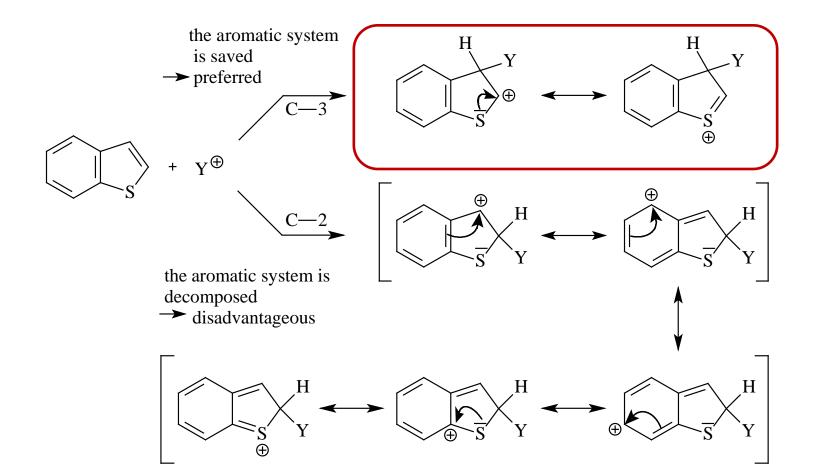
IV/ Thiophene derivatives with condensed ring system


Nomenclature

thionaphthene benzo[b]thiophene

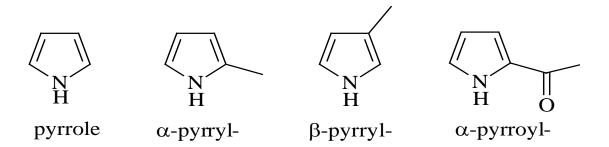
iso-benzothiophene benzo[c]thiophene isonaphthene

dibenzothiophene

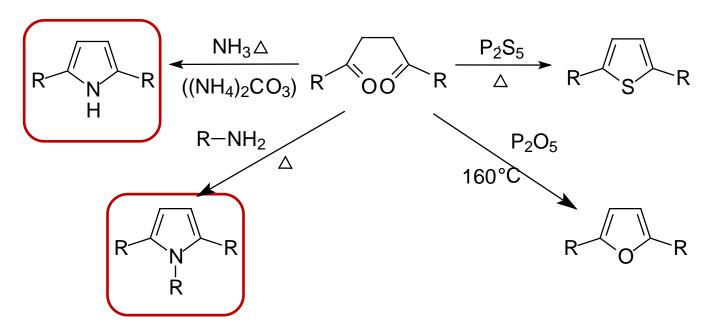

Preparations

mercaptocinnamic acid

trans thioindigo


cis thioindigo

Chemical properties


V/ Pyrrole and its derivatives

Nomenclature

Preparations

1/ By Paal-Knorr synthesis from dioxo compounds

2/ By Hantzsch synthesis

3/ By Knorr synthesis

$$\begin{array}{c} H_3C \\ C=O \\ CH_2 \\ ROOC \end{array} \longrightarrow \begin{array}{c} C_5H_{11}ONO \\ \text{(isopentyl nitrite)} \\ \text{or} \\ \text{NaNO}_2 \mid \text{CH}_3\text{COOH} \end{array} \longrightarrow \begin{array}{c} H_3C \\ C=O \\ ROOC \\ N-OH \end{array} \longrightarrow \begin{array}{c} Z_{11}/CH_{12}COOH \\ ROOC \\ N-OH \end{array}$$

$$\begin{array}{c|c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ -H_2O \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ ROOC & NH_2 \\ \hline \\ \end{array} \qquad \begin{array}{c} H_3C & COOR \\ \hline \\ \end{array} \qquad \begin{array}{$$

EtOOC
$$R^3$$
-NH₂ R^2 N R^3 R^3 R^3 R^3 R^3 R^3

Hantzsch

EtOOC
$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$C$$
-alkylation
$$R^{2}$$

EtOOC
$$\mathbb{R}^2$$
 \mathbb{R}^1 \mathbb{R}^3

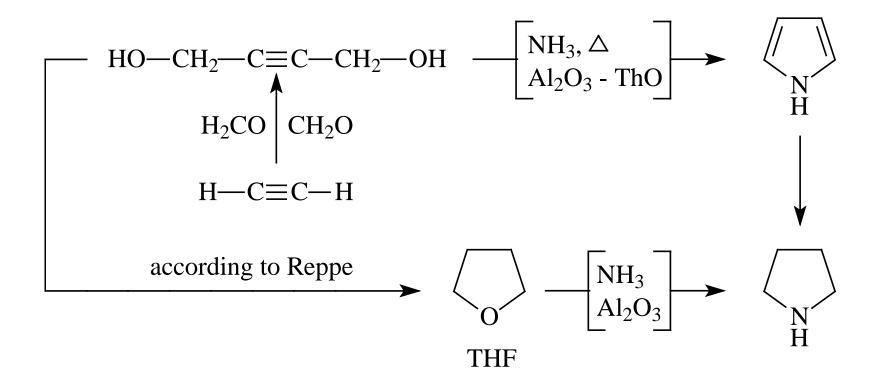
EtOOC
$$R^{1}$$

$$R^{2}$$

$$NH$$

$$R^{3}$$

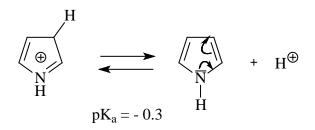
$$N$$


$$N$$
-alkylation
$$R^{2}$$

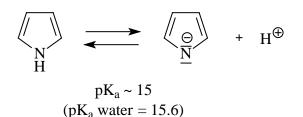
4/ By pyrolysis of ammonium mucoate

5/ From dehydromucoic acid through furan

OH
$$\xrightarrow{\triangle}$$
 OH $\xrightarrow{-\text{CO}_2}$ OH $\xrightarrow{N\text{H}_3 450 \, ^{\circ}\text{C}}$ $\xrightarrow{N\text{H}_3 450 \, ^{\circ}\text{C}}$


6/ According to Reppe, from butyn-1,4-diol

Chemical properties


1/ Acid-base properties

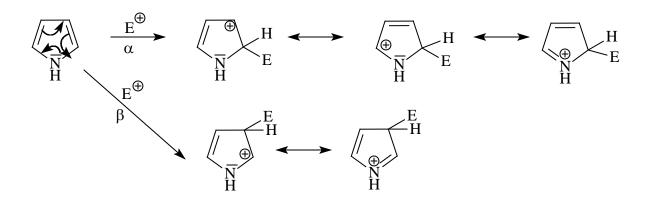
a/ pyrrole, as base

Absorption of a proton is an addition process (not S_EAr) Protonation takes place at the C-2, not at the N Protonation ceases the aromatic system, resulting in a conjugated diene with much higher reactivity. For this reason, pyrrole is sensitive to acids

b/ pyrrole, as acid

Pyrrole is a weak acid – and an amphotheric compound Furan, pyrrole, thiophene are stable against bases

2/ Tautomerism


Tautomerism of hydroxy- and amino-derivatives

The hydroxy compounds exist mostly in oxo forms, the amino compounds in amino forms (→ can be diazotised)

$$\begin{array}{c|c} OH & \hline \\ N &$$

3/ S_EAr reactions

Take place in two steps, with much greater reaction rate, compared to of benzene

 $\alpha > \beta$ σ -complex is more stable, since more mesomeric structures can be written for it.

If attack happen to β position $E = H^{\oplus}$ protonation reaction takes place. Otherwise the electrophilic reagent attacks the β position, if the α position is occupied.

Protonation

$$\begin{array}{c|c}
 & H^{\oplus} \\
\hline
N \\
H
\end{array}$$

$$\begin{array}{c}
 & \text{protomers} \\
N \\
H
\end{array}$$

$$\begin{array}{c}
 & \\
N \\
H
\end{array}$$

By bromination

By chlorination

By nitration, sulfonation

By Friedel-Crafts acylation

$$\begin{array}{c|c}
\hline
 & \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
(CH_3CO)_2O \\
SnCl_4
\end{array}$$

$$\begin{array}{c|c}
N \\
H
\end{array}$$

$$\begin{array}{c|c}
CH_3$$

pyrrole > benzene (SnCl₄ < AlCl₃ both are electrophilic catalyst, but the latter is much more powerful, therefore the latter is not used for the acylation of pyrrole, since the reaction would be too vigorous

By Reimer-Thiemann reaction

$$\begin{array}{c|c} CHCl_3 \\ cc. \ base \\ H \\ \hline \\ -\delta \\ +\delta Cl \\ \end{array}$$

$$\begin{array}{c|c} Cl \\ hydrolysis \\ Cl \\ CH \\ Cl \\ \end{array}$$

$$\begin{array}{c|c} Cl \\ hydrolysis \\ CH \\ CH \\ CH \\ \end{array}$$

$$\begin{array}{c|c} CH \\ CH \\ CH \\ CH \\ \end{array}$$

$$\begin{array}{c|c} CH \\ \end{array}$$

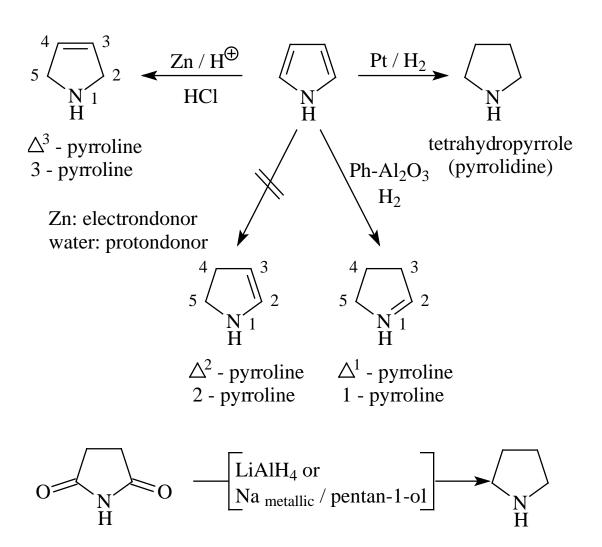
$$\begin{array}{c|$$

At first, N-potassium salt is formed due to cc. KOH

$$\begin{array}{c|c}
 & KOH \\
 & N \\
 & K
\end{array}$$

Formation of dipyrrylmethane

analogous process to the formation of phenol resins


dipyrrylmethene

By Fischer-Orth reaction

By Fischer-Bartholomäus reaction

4/ Transformation to heteroalkene-, or heteroalkane derivatives

By reduction reactions

By oxidation reaction

By Diels-Alder reaction

there is no reaction with pyrrole, but there is formation of adduct with hexafluoro-Dewar-benzene

By polymerisation

5/ Amphotheric properties of pyrrole

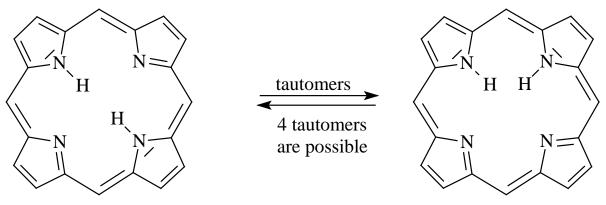
Metal derivatives and their transformations

Pyrrole does not react by nucleophilic substitution reactions

The H at α -metil group is not active (the C-H bond is stable due to π electron excess)

The H at
$$\alpha$$
-1

 N
 H
 C
 H
 H
 H


electron rich C-atom

More important derivatives

a/ monocyclic pyrrole derivatives

b/ compounds with porphin skeletone

Porphin

- bonds in aromatic system
- 4 n + 2 n = 4
- alkene bonds (double bonds) 18π electrons

The Fe, Mg, Co salts of porphin can be found in nature. Very stable, what is necessary for it purposes. Mp: 300 °C, red crystals

The tautomer forms can be also described by mesomers. Each tautomer may have many mesomers.

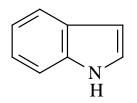
Vitamin B_{12} (cyanocobalamin)

Preparation of it was carried out from liver, from mud of canals, or by fermentation (Streptomyces griseus)

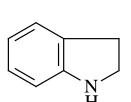
Structure determination was executed by X-ray analysis (Dorothy-Crowfort Hodgkin)

Synthesis of it was carried out by Robert Burns Woodward (Harvard University) and Albert Eschenmoser (ETH Zürich)

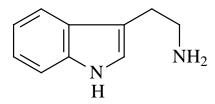
Vitamin B_{12} has been isolated from mud of canals by Richter Pharmaceutical Works (Budapest, Hungary) since Years 1950s. Woodward synthesized chlorophyll by total synthesis in 1965, while Woodward and Eschenmoser in cooperation prepared Vitamin B_{12} in 1972-73.


Vitamin B_{12} has important role in biological methylation. It is the antidote of Anemia perniciosa (pernicious anemia). Its appearence is in deep red needles. Liver extracts were useful in this disease.

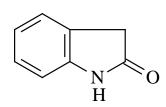
It was the first macromolecule, which structure was elucidated by X-ray analysis. There is delocalisation in Vitamin B_{12} , but it is neither a cyclic delocalised system, nor aromatic system. The current Vitamin B_{12} extract is of not synthetic origin.

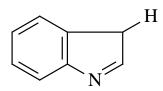

The question is the following: how did these compounds appear in nature and why not other compounds were prepared by biosynthesis. There are building blocks for living organisms – hem, or chlorophyll were prepared at rather low stage of evolution. Usually the most symmetric structure is set – the rest is prepared, but disorderness has always greater probability \rightarrow enthropy is increasing by having the least symmetry elements. It is selected by molecular evolution and does the job perfectly. The role of cobalt in Vitamin B_{12} : it depends on ring size. Woodward's report on it is a complete chemical thriller.

VI/ Pyrrole derivatives with condensed ring systems

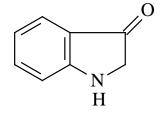

Nomenclature

1*H*-indole benzo[b]pyrrole

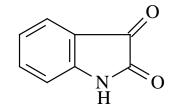

indoline


tryptamine

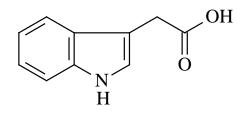
takes place in the biosynthesis of indolealkaloids


benzo[b]pyrrole (indolenine)


oxindole


3*H*-indole

indoxil


N-methylisoindole (isoindole does not exist) benzo[c]pyrrole

isatin

serotonine

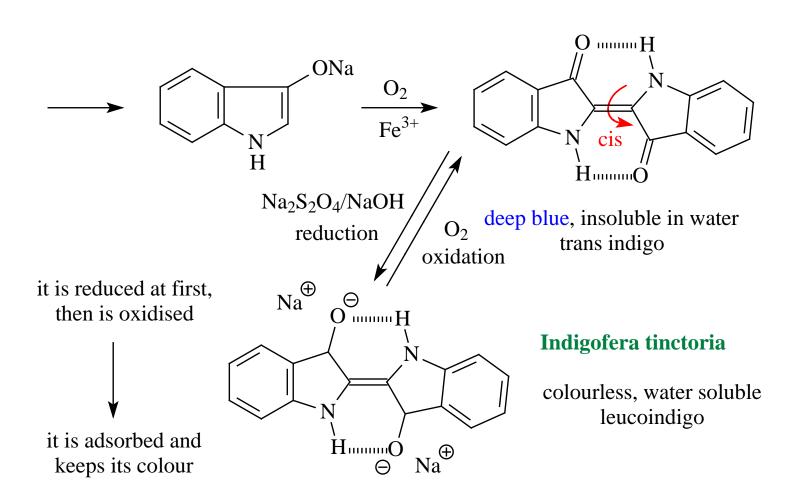
5-hydroxytryptamine important for brain work

3-indolylacetic acid heteroauxin plant growing hormone

Preparations

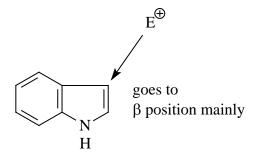
1/ Preparation of indole

2/ Preparation of indole derivatives

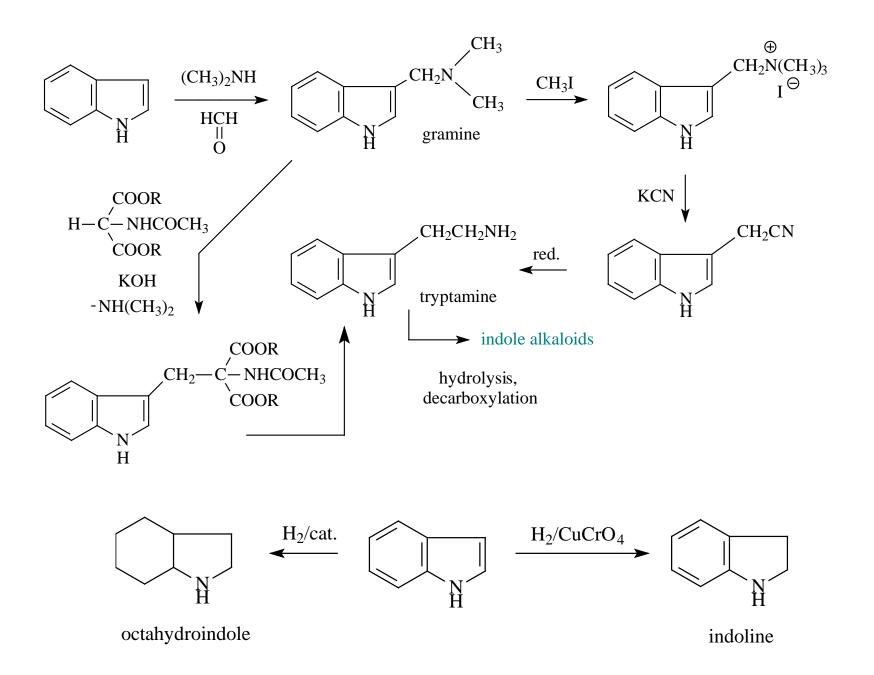

a/ Fischer's indole synthesis

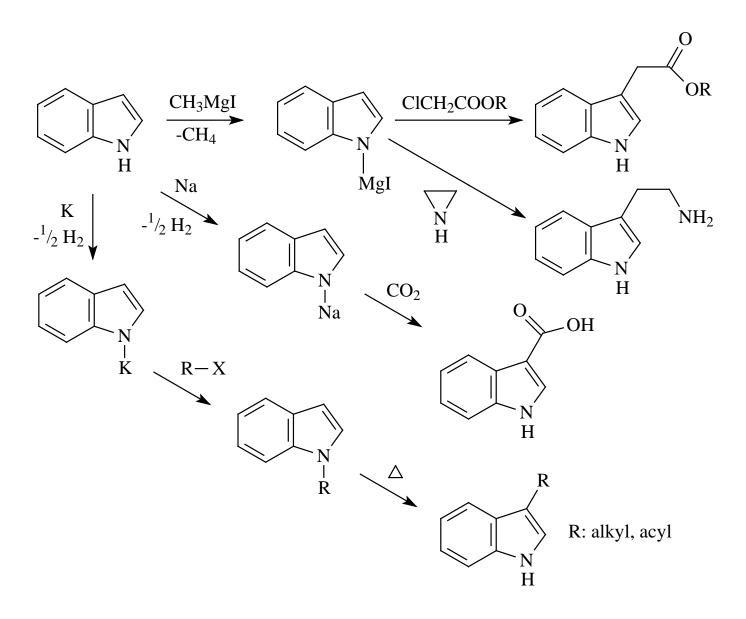
3-methylindole

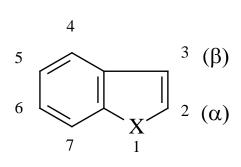
Mechanism of the Fischer's indole synthesis


$$\begin{array}{c} HC \\ CCl_3 \\ NH_2 \\ HO \\ \end{array} \\ \begin{array}{c} CH=N-OH \\ CC-Cl \\ H \\ \end{array} \\ \begin{array}{c} CH=N-OH \\ CC-OH \\ H \\ \end{array} \\ \begin{array}{c} O \\ COH \\ H \\ \end{array} \\ \begin{array}{c} O \\ NH_3 \\ \end{array} \\ \begin{array}{c}$$

b/ Heumann's indigo synthesis

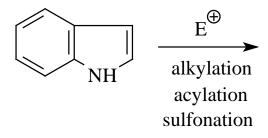

Chemical properties

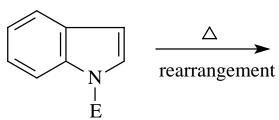

1/ S_EAr reactions

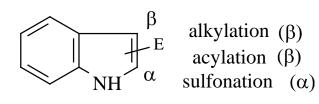

halogenation nitration sulfonation alkylation acylation

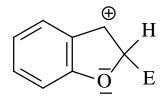
2/ Other reactions

Benzocondensed systems with five-membered heterocycle




 S_EAr


X: NH 1*H*-indole β (α)

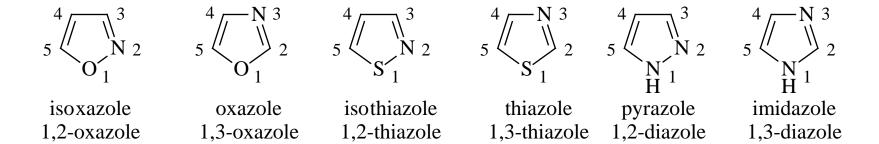

O coumarone α

S thiocoumarone β (α)

coumarone

advantageous

$$E \oplus \bigoplus_{\mathbb{Q}} \mathbb{Q}$$


$$\mathbb{Q}$$

$$\mathbb$$

Five-membered heterocycles with two or more heteroatoms and their derivatives with condensed ring systems

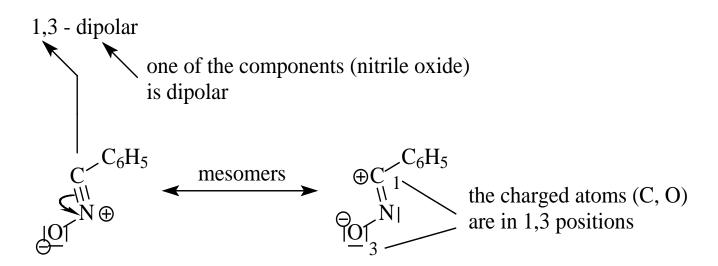
Compounds with two heteroatoms

Nomenclature

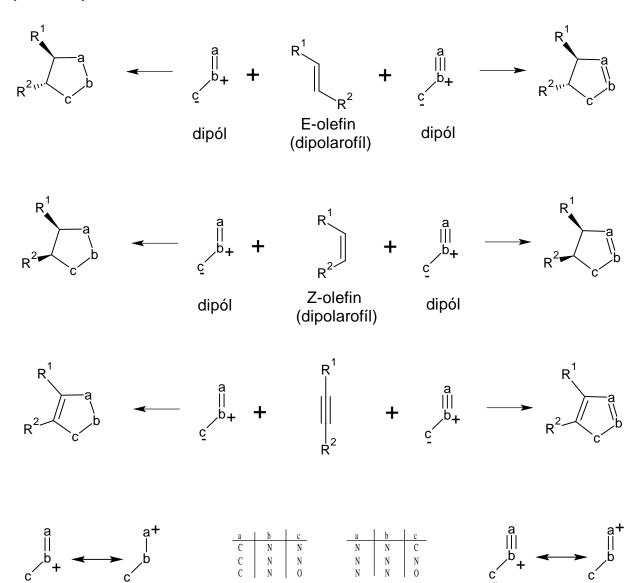
Introduction of another nitrogen \rightarrow the pyrrole-like properties are shifted to the pyridine-like properties, e.g., at basicity, water solubility.

I/ <u>Isoxazole and its derivatives</u>

Preparations


1/ By 1,3-dipolar cycloaddition (Huisgen)

$$\begin{array}{c|c} H_5C_6 & C_6H_5 \\ C & C_6H_5 \\ H_5C_6 & N \oplus \\ \end{array} \xrightarrow[O]{} \begin{array}{c} C_6H_5 \\ \\ \end{array}$$


It takes place by 4n+2 electrons, n=1

→ suprafacial reaction, 1,3-dipolar cycloaddition, in one step through a cyclic transition state

nitrile oxide

By 1,3-dipolar cycloaddition

R. Huisgen, Angew. Chem. **75** (1963) 604-637. 742-754.

A. Padwa, 1,3-Dipolar Cycloaddition Chemistry. Vol. 1-2. John Wiley and Sons 1984.

2/ By other ring syntheses

$$\begin{array}{c} H \\ CH_3 \\ \hline \\ OH \\ O \end{array}$$

$$\begin{array}{c} R \\ \hline \\ H_2N-OH \\ \hline \\ -H_2O \\ \hline \\ R=H \\ \end{array}$$

$$\begin{array}{c} R \\ \hline \\ Cl \\ R=H \\ \end{array}$$

$$\begin{array}{c} R \\ \hline \\ R=H \\ \end{array}$$

Chemical properties

1/ It is sensitive to bases, resulting in ring opening

It is relatively stable against acids

$$R = H$$

$$R = CH_{3}$$

$$R = H$$

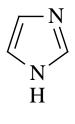
$$E^{\oplus}$$

$$R = CH_{3}$$

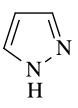
$$R = CH_{3}$$

$$R = H$$

$$R = CH_{3}$$


$$R = CH_{3}$$

$$R = H$$


E: Br⁺, NO₂⁺, HSO₃⁺

3/ Basic strength in aqueous solution

pK_a values for the conjugated acids of the bases

 $\sqrt[N]{s}$

pK_a values

7.0

2.5

2.5

1.3

basicity

Imidazole >>

Thiazole \geq

Pyrazole >

Isoxazole

More important derivatives

benzisoxazole benzo[d]isoxazole

salicylaldehyde

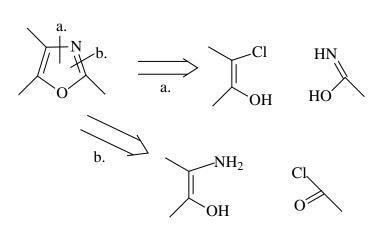
 NO_2

 H_2N Hum ŃΗ H_5C_6 6-aminopenicillanic acid fragment

penicillin

Penicillin: was prepared from *Penicillium* notatum fungus (Fleming, 1929) at first by fermentation method. It was the first antibiotic compound: 6-amino-penicillanic acid. Some microorganisms are preparing it by cleavage of the acyl group. This is useful for preparation of other semisynthetic derivatives

II/ Oxazole and its derivatives


Preparations

1/ From 1,2-bifunctional compounds

$$H_{2}C-NH_{2}$$
 C_{1} C_{2} C_{1} C_{2} C_{3} C_{1} C_{1} C_{1} C_{2} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{2} C_{3} C_{1} C_{1} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{2} C_{3} C_{1} C_{1} C_{1} C_{2} C_{3} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{2} C_{3} C_{3} C_{1} C_{1} C_{2} C_{3} C_{1} C_{2} C_{3} C_{3} C_{3} C_{3} C_{3} C_{3} C_{1} C_{3} C_{3

More generally:

a. Cl H_2N it is difficult to alkylate the amide nitrogen b. NH2 Cl reactions run similarly at both pairs

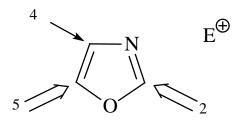
reactions run similarly at both pairs
$$O$$

it is easy to acylate the primary amine nitrogen

Differences in saturation of the products can be reached by selection of the proper oxidation level of the starting materials.

$$\begin{array}{c|cccc}
NH_2 & CI & \Delta & & & \\
OH & O & R & & & & \\
\hline
NH_2 & O & & & & \\
OH & H & R & & & \\
\end{array}$$

$$\overline{\underline{0}}$$


6 π -electrons the nonbonding electron pair of O takes part in the formation of an aromatic sextet

due to the alkene
$$\begin{array}{c}
1 \text{ due to C-N bond} \\
\hline
1/2 \\
\hline
N \\
\hline
C=N \\
\hline
1 \text{ due to C-O bond}
\end{array}$$

R': Alkyl, NH₂

Chemical properties

1/ S_EAr reactions

One of the most stable derivatives of 2-oxazoline is 2-methyloxazoline. This compound has an interesting feature, since mechanism of acyl migration (Bruckner, at ephedrine or alkaloids with tropane skeletone), as well as the ring opening due to bases or acids can be easily demonstrated.

2/ Sensitivity against bases and acids

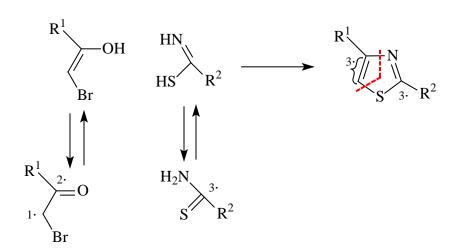
More important derivatives

2,4-oxazolidindione

2,5-oxazolidindione

Ptimal

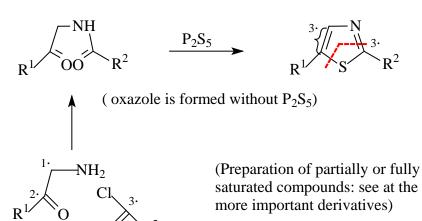
blocks maturation of rye mould


III/ Isothiazole and its derivatives

$$\begin{array}{c|c} SH & SnCl_2 \\ \hline NO_2 & cc. \ HCl \ \triangle \\ \hline \end{array}$$
 thioanthranil

benzisothiazole

IV/ Thiazole and its derivatives


1/ Hantzsch synthesis

 6π electrons (similar to oxazole)

2/ Gabriel's preparation

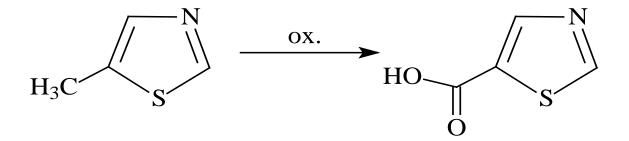
(oxazole is formed without P_2S_5)

R': Alkyl, NH₂

Chemical properties

1/ S_FAr reactions

$$X=0$$
, NH


2/ S_NAr reactions

pyridine-like property

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Y = halogene, hydroxy, etc. (see reactions of (aromatic) diazonium compounds)

3/ By oxidation

thiazole ring is resistant to oxidation

More important derivatives

2-thiazoline derivative

benzo[d]thiazole

benzo[d][1,3]thiazole

penam skeletone

(condensed ring system of thiazolidine and azetidine monocycles)

R = H 6-aminopenicillanic acid (6-APA)

$$R = C_6H_5 - CH_2 - C -$$
benzylpenicillin Penicillin G

R =

$$C$$
 C_6H_5
 C
 C_6H_5

Oxacillin (see at isothiazoles)

B lactam ring is unstable group, sensitive to acids, to bases, as well as to penicillinase enzyme. They are inhibitors of synthesis of cell walls. If a microorganism produces penicillinase, then it will be resistant to the given penicillin derivative \longrightarrow other derivative must be prepared. Previously, penicillin derivatives were prepared from ferment solution, adding phenylacetic acid to it, generating benzylpenicillin. Benzylpenicillin + enzyme \longrightarrow 6-APA +R-COCl \longrightarrow many thousands penicillin derivatives.

Source: Penicillium notatum, P. crysogenum bacteria. Antibiotics are more uniform compounds, than vitamins.

Antibiotics are natural compounds, produced by some microorganisms against other microorganisms, blocking the latter. Fleming observed extinction spots, thus he had hard earned the Nobel Prize.

Currently penicillin derivatives are prepared by semisynthesis methods: 6-APA is made to be produced by bacteria. This was one of the first trials of biotechnology.

V/ Pyrazole and its derivatives

Preparations

1/ By 1,3-dipolar cycloaddition (Huisgen)

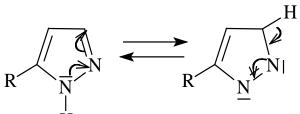
2/ By isosteric replacement from isoxazole

$$\begin{array}{c|c}
 & NH_3 \\
 & pressure
\end{array}$$

Chemical properties

1/ Acid-base properties

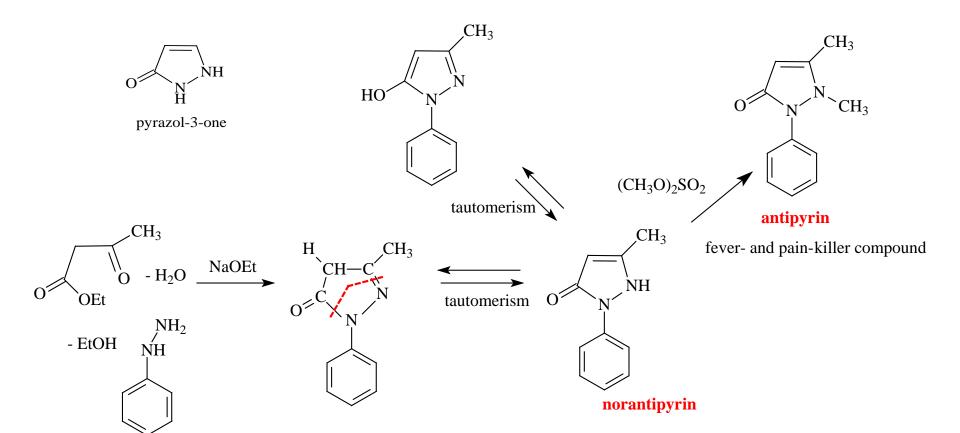
Introduction of a nitrogene shifts the pyrrole-like properties to the pyridine-like properties.


weak base $pK_a = 2.5$ (pyrrole< pyrazole< imidazole< pyridine) very weak acid $pK_a = 14$ (it is amphotheric compound) makes a H-bridge

2/ Tautomerism

virtual tautomerism (equivalent tautomerism) the two tautomers can not be distinguished from each other

real tautomerism - if a R group (alkyl group) is attached to the ring, the tautomer is fixed. The indicated H is migrating - it can be marked by isotope or substituent


3/ S_EAr reactions

substitution on the C-4: bromination, nitration, sulfonation

$$\begin{array}{c|c} O_2N & H_2N \\ \hline N & HO-NO_2 & N \\ \hline N & H & N \\ \hline N & H & N \\ \hline N & N & N \\ N & N & N \\ \hline N & N & N \\ N & N & N \\ \hline N & N & N \\ N & N & N \\ \hline N & N$$

More important derivatives

N-benzoyl-*N*-nitrozotoluidine

Amidazophene

Methamisole

VI/ Imidazole and its derivatives

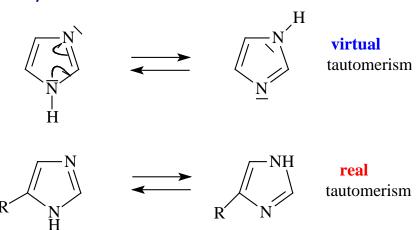
Preparations

1/ From 1,2-bifunctional compounds

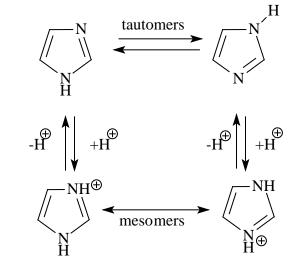
$$\begin{array}{c|c}
CH_3C & \overline{O} & \ominus \oplus & C_6H_5 \\
\hline
CH_3C & NH_4 & 3. & N \\
\hline
C_6H_5 & N \\
C_6H_5 & N \\
R
\end{array}$$

R': Alkyl, NH₂

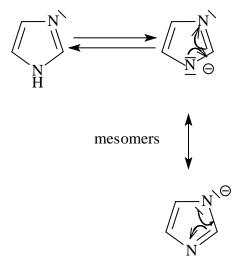
R¹, R²: alkyl groups

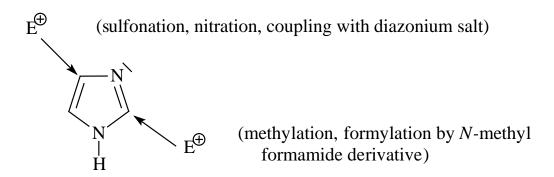

Edman sequencing of peptides

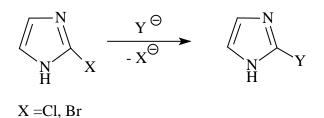
Chemical properties


1/ Acid-base properties

pKa 7.2 amphotheric compound H pKa 14.5


2/ Tautomerism




as acid

3/ By S_FAr reactions

4/ By S_NAr reactions

More important derivatives

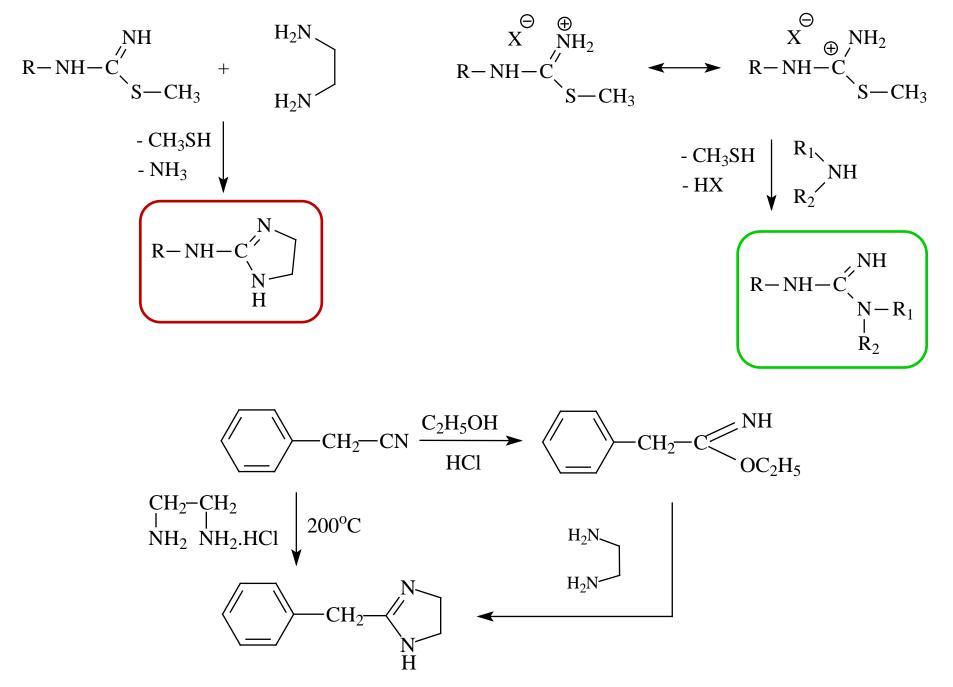
$$R = H, \text{ alkyl}$$

$$R = H, \text{ a$$

imidazolidine derivative

diphenylglycolic acid

generated in allergic reactions


$$R^1$$
 R^2 R^3

Phenytoin —H —

Diphedan antiepilepticum

Mephenytoin
$$-CH_3$$
 $-C_2H_5$

Sacerno antiepilepticum

tolazoline sympatholytic

$$\begin{array}{c} CH_2CN \\ \hline \\ H_2N-CH_2-CH_2-NH_2 \ / \ HCl \\ \hline \\ melting \end{array}$$

Naphazoline

R:

$$R = NH_2$$
 $R = NH_2$
 $R = NH_2$

(structural element of B₁₂ vitamine)

Monocyclic compounds with more than two heteroatoms

I/ Triazoles and its derivatives

1,2,3-triazole 1,2,4-triazole

azoimide acetylene derivative

ROOC H
$$\stackrel{|}{N}$$
 \oplus ROOC $\stackrel{|}{N}$ $\stackrel{|}{N}$ $\stackrel{|}{N}$ $\stackrel{|}{N}$ $\stackrel{|}{N}$ alkylazide

dialkyl maleate

1,2,3-benzotriazole

for 1,2,3-triazoles

1,2,4-triazoles

II/ Tetrazole and its derivatives

1*H*-tetrazole

$$\begin{array}{c} H-N=\overset{\oplus}{N}=\overset{\ominus}{N}|\\ \text{hydrogen azide}\\ \text{(azoimide)}\\ &\overset{\ominus}{H-\overset{\bullet}{\underline{N}}}-\overset{\bullet}{N}\equiv N|\\ &\text{mesomers} \end{array}$$

1,5-pentamethylenetetrazole

III/ Thiadiazole and its derivatives

$$\begin{array}{c|c}
4 & N^3 \\
 & N \\
 & N \\
 & N \\
 & 1
\end{array}$$

1,2,3-thiadiazole

1,2,4-thiadiazole

$$\begin{array}{c|c}
4 & 3 \\
5 & N & N \\
S & 2
\end{array}$$

1,2,5-thiadiazole

$$\begin{array}{c}
4 & 3 \\
N-N \\
5 \cancel{N} & 2
\end{array}$$

1,3,4-thiadiazole

Fonurit

Diamox diuretic compound with carboanhydrase blocking effect

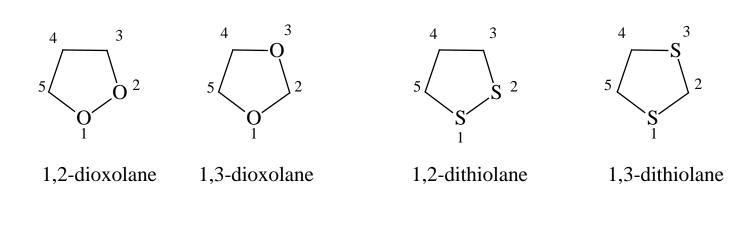
IV/ Oxadiazole and its derivatives

1,2,3-oxadiazole

1,2,4-oxadiazole (azoxime)

1,2,5-oxadiazole (furazane)

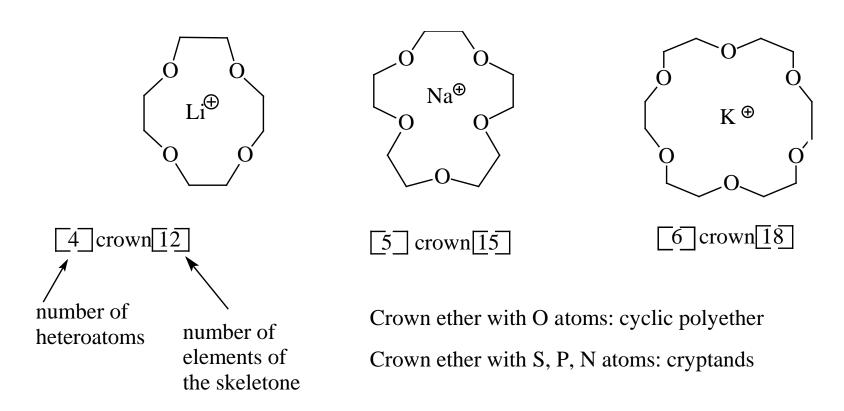
1,3,4-oxadiazole


$$HN-NH$$
 H_3C
 O
 O
 CH_3
 D
 O
 CH_3

symmetric diacyl hydrazine

Prenoxdiazine

Less frequent heterocyclic rings and ring systems

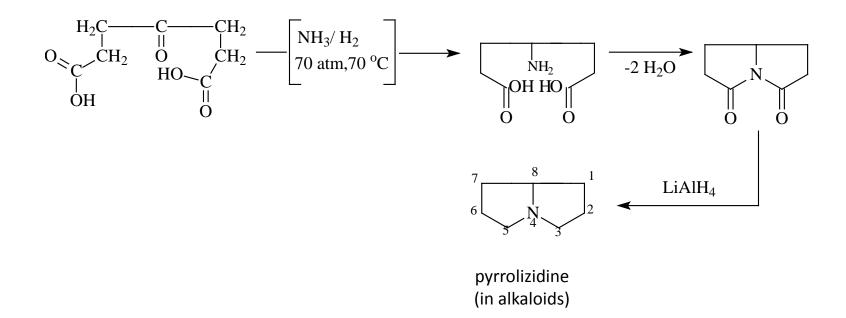

I/ <u>Dioxolanes and dithiolanes</u>

$$\begin{array}{c|c}
 & \text{tosylic acid} \\
 & \text{CaCl}_2 \\
 & \text{O}
\end{array}$$

$$\begin{array}{c|c}
 & \text{Br} & \text{Na}_2S \\
 & \text{S}
\end{array}$$

II/ Crown ethers and cryptands

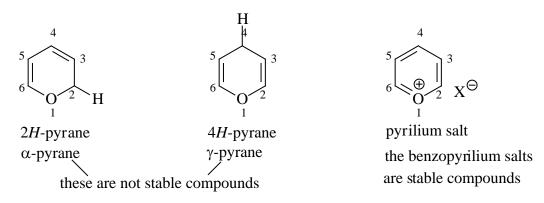
C.J. Pedersen, J.M. Lehn and D.J. Cram 1987 Chemical Nobel Prize


Crown ethers

C. J. Pedersen discovered these cyclic polyethers with many oxygen atoms in 1967. Their curiosity is that they are able to form insoluble complex with various metal cations, e.g., Li, Na, K, depending on the inner diameter of the ring, resulting in removal of these cations by filtration. This discovery had great importance from organic chemical point of views. Large-scale preparation of crown ethers was carried out by industry. There are crown ethers with 4, 5 and 6 oxygen atoms.

Application of crown ethers may take place in organic chemistry by dissolution of a crown ether in aprotic solvent, then adding potassium, or sodium salts to it, the crown ether makes complex with the cation, and precipitated. There is a highly reactive anion in the solution after filtration. E.g., potassium permanganate becomes soluble in benzene after treating it with crown ether, then this apolar solution of permanganate anion is used as strong oxidating agent. Similarly potassium cyanide, potassium fluoride, potassium nitrite, potassium iodide can be dissolved apolar solvents. Reduction by sodium borohydride can be carried out in aromatic solvents, if crown ether was added. E.g., dehydration of an O-tosylate runs for 42 hours at usual conditions, while the yield is only 9 %. The same compound has dehydration in the presence of crown ether within 1 hour with yield of 70 %. Many such kind of applications can be found in the literature.

Pedersen, then Jean Mary Lehn were working with such crown ethers in 1965. They prepared ethers with greater ring size \rightarrow crown ethers. The oxygen atoms are arranged in the structure in order to make noble gas configuration with the proper cations. The counter anion is attached from outside. KMnO₄ is insoluble in benzene. However, adding some crown ether to the suspension, - e.g., [18] crown [6] - colour of benzene turns to be of violet, showing dissolution of KMnO₄. The crown ether can solvate K[⊕], while permanganate ion is attached to this complex in form of ion pair, from in front of the ring or from behind the ring. Permanganate ion is naked, there is only electrostatic attachment of ions. Therefore, the oxidating behaviour of permanganate ion is remained. KOH can be dissolved in apolar solvents by a crown ether. Hydroxide anion is naked, its nucleophilic power is remained in S_N reactions. The only condition of dissolution of the reagent is that the cation must make stable complex, while the anion is naked. The similar dissolution happens in dipolar aprotic solvents. The naked anions are of much more nucleophilic, than any solvated anions. Such kind of dissolutions are called as solid-liquid transfer. Liquid-liquid transfer: see PTC reactions (phase transfer catalysis).


III/ Pyrrolizidine

Six-membered heterocyclic compounds with one heteroatom and their derivatives with condensed ring system

I/ Pyrane and its derivatives

Nomenclature

Preparations

$$\begin{array}{c} C_{6}H_{5} \\ C_{6}H_{5}$$

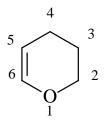
pyrilium salt

$$\begin{array}{c|c}
O & acetone \\
CH_2 & CH_2 \\
\hline
CH_2 & R-ONa \\
\hline
OR & OR \\
\hline
ROOC & OO \\
\hline
COOR & acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
\hline
ROOC & OO \\
\hline
COOR & Acid \\
COOR & Acid \\
\hline
COOR & Acid \\
COOR & Acid \\
\hline
COOR & Acid \\
COOR & Acid$$

dialkyl oxalate

Η

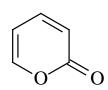
COOH

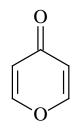

`N´ H

HOOC

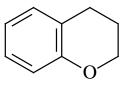
$$\begin{array}{c|c}
CH_3NH_2 / H_2O \\
\hline
\text{pressure, boiling}
\end{array}$$

$$\begin{array}{c}
N \\
CH_3
\end{array}$$


More important derivatives


3,4-dihydro--2*H*-pyran

tetrahydro -pyran

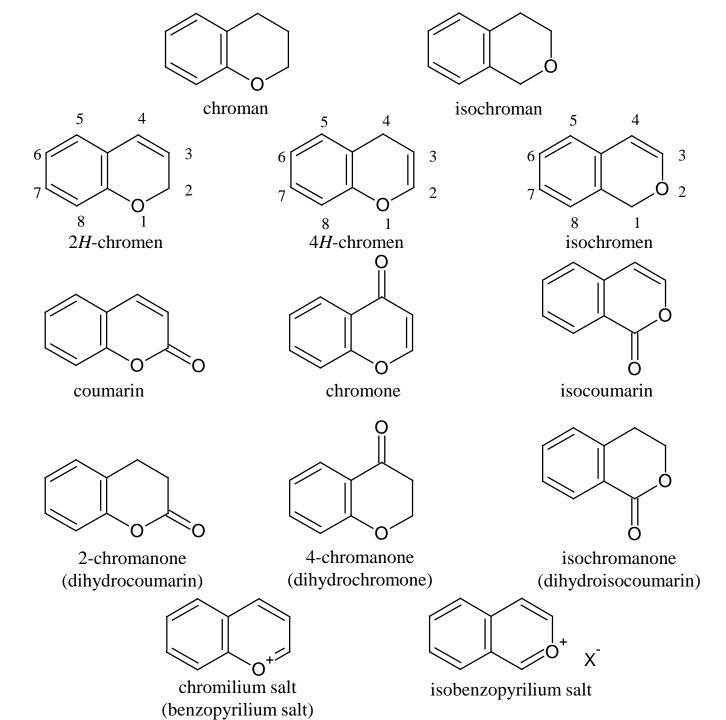


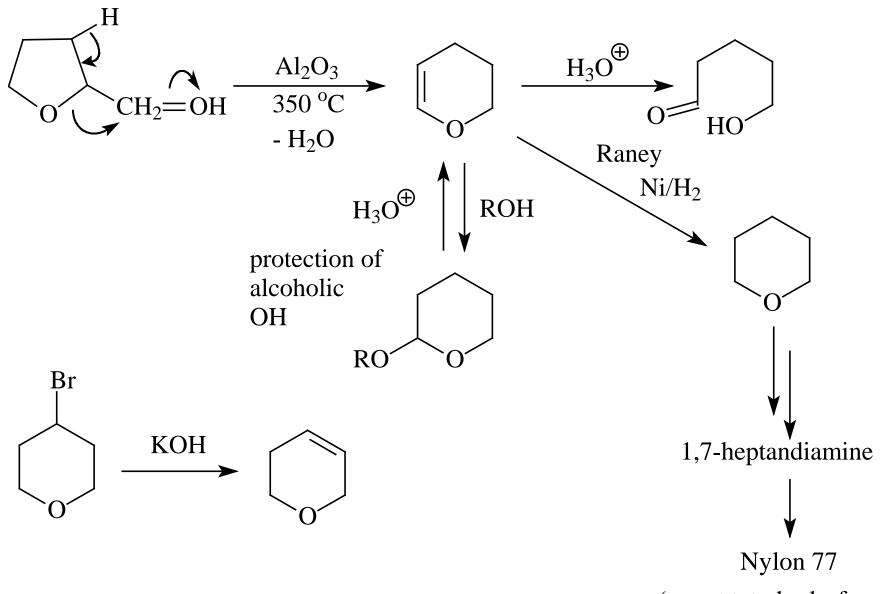
2H-pyran-2-one α -pyrone

4*H*-pyran-4-one γ-pyrone

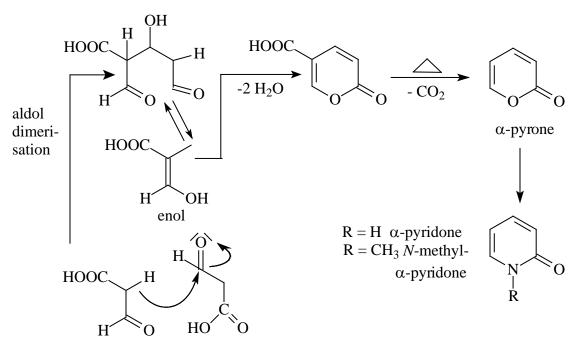
α-chromen (stable)

chroman

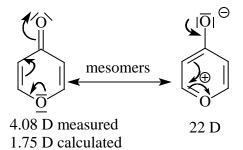

γ-chromen 4*H*-chromen (unstable)

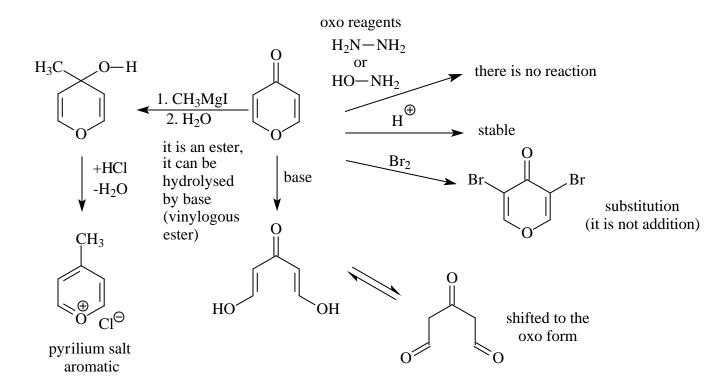

2*H*-chromen-2-one α-chromone coumarin

α-chromanone

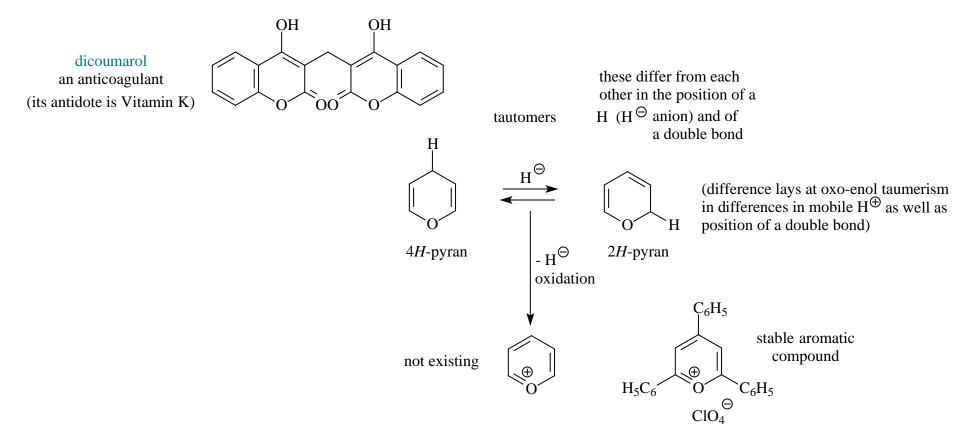

γ-chromanone

4*H*-chromen-4-one γ-chromone




(see at tetrahydrofuran)

formylacetic acid



It is a double vinylogous lactone Both mesomers contribute to the real structure

it can be isolated from wheat germ oil Vitamin E it participates in $\alpha\text{-}To copherol$ keeping pregnancy CH₃ (tokos: birth, ferein: carry) HO. .CH₃ H_3C $\dot{\text{CH}}_3$ CH_3 CH_3 CH_3 ĊH₃

Coumarin - its hydroxy derivatives occur in glycoside form in nature

Anthocyanines

These derivatives are compounds with conjugated double bonds (conjugated: 2*H*-pyran, or isolated: 4*H*-pyran) (heterocyclic alkenes). The compounds are reactive ones with high energy content.

hydrolysis

Anthocyanines are glycosides — anthocyanidine (aglycon) + sugar component Flavinium salts: coloured materials of plants with glycoside type (flower petals, fruits, strawberry, pelargonium, red poppy, black grape, bluebonnet, chrysanthemum): these might be red, purple, violet, blue

 α -Chromene derivatives are polyhydroxy compounds with 5 hydroxy groups. Its derivatives occur in the nature only, e.g., methyl ether, acetyl derivative, or with free hydroxy groups.

The glycoside structure is the remnant of molecular phylogenesis, representing its carbohydrate origine.

Cyanin (greek) – blue

The actual colour depends on pH of cells as well as on depth of layers, since coloured components do not move freely within the cells, these form layers. Blue colour of bluebonnet and red colour of red poppy comes from the same molecule.

Colour depends on:

- 1. pH value
- 2. number of hydroxy groups
- 3. the actual form of hydroxy group (free, methyl ether, glycoside)
- 4. position of glycoside group

pseudobase colourless

pH = 11 blue (flower petals)

These differ in the number and positions of hydroxy groups, in quality and position of the sugar components.

Source of red colour can be carotenoids (red pepper), while other carotenoids are yellow.

White colour of flower petals come from the colourless air, but from not a coloured material.

There is sp² conjugated system in cyanidine chloride, where the pyrilium salt is the auxochrome component.

Appearence of a sp³ carbon separates the two chromophores, resulting in no absorbance in the coloured range.

Flavonoids

Yellow colour of yellow plants (flavus – yellow) γ -chromene derivatives

Colour of tulips and other plants by springtime. There can be 4 types of hydroxy derivatives (free, methyl ether, acetoxy derivative or glycoside), similarly to the anthocyanines.

2-phenylchromane flavane

2- phenyl-4*H*-chromene flavene

2-phenyl-2*H*-chromene

flavanone

flavone

$$\bigcap_{x^{\Theta}}$$

flavinium salt

flavanonol

flavonol

isoflavone

Prof. Géza Zemplén Technical University at Budapest : he was a flavonoid researcher

flavanol type

Vitamine P: discovered by Szent-Györgyi, Rusznyák, Bruchner It decreases permeability of capillaries, increasing their resistance.

$$\begin{array}{c} OH & O \\ \\ R = H & R = CH_3 \\ \\ OH \\ \end{array}$$

Perkin-synthesis

Anthocyanines: α -chromene derivatives

Flavonoids: γ-chromene derivatives

Anhydrobases: compounds forming salts with acids without generating water (see the examples on the previous slides)

Pseudobases: some secondary carbons with OH can dissociate to hydroxy, similarly to the effect of bases _____ pseudobases

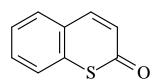
compound II is an anhydrobase, since it contains one water molecule less, than compound I

II/ Thiapyran and its derivatives

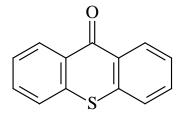
Structure

 α -thiapyran

 γ -thiapyran

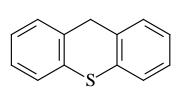

tetrahydrothiapyrone

Preparation


$$\frac{\text{Na}_2\text{S}}{\text{EtOH}} \rightarrow$$

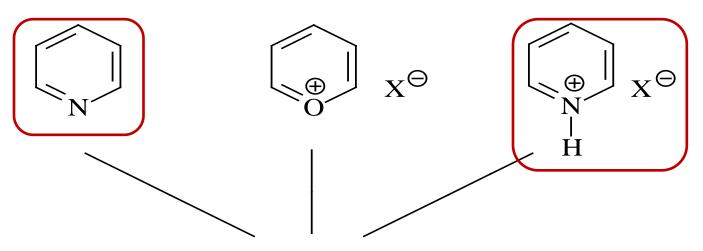
tetrahydrothiapyran

α-thiachromene


thiacoumarin

thiaxanthone

thiachroman


 γ -thiachromone

thiaxanthene

III/ Pyridine and its derivatives

Structure

aromatic compounds with π - electron deficiency

Preparations

1/ Isolation from coal tar

Homologues of pyridine are isolated from coal tar Homologues of pyridine with 1 methyl groups are called as picolines Homologues of pyridine with 2 methyl groups are called as lutidines Homologues of pyridine with 3 methyl groups are called as collidines Homologues of pyridine with 4 methyl groups are called as parvolines

picolines:

$$CH_3$$
 CH_3
 CH_3
 α
 β
 γ

lutidines:

collidines:

parvolines:

2/ Hantzsch synthesis

$$\longrightarrow EtO \bigcirc R \bigcirc O$$

$$OEt$$

pyridine derivative stabilised, therefore its dihydro derivative is easily oxidised to aromatic compound

3/ From 1,5-dioxo compounds

4/ By isosteric exchange

see at pyran and its derivatives

5/ By Chichibabin synthesis

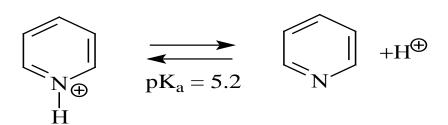
$$CH_3$$
 CH_3
 CH_3

Physical properties

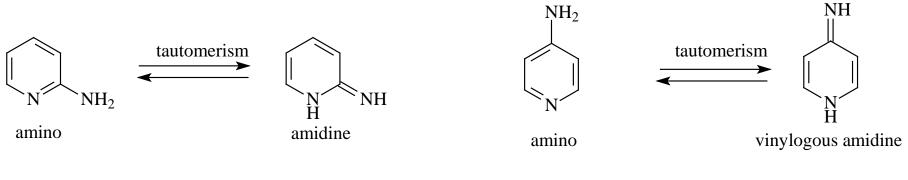
The parent compounds have high solubility in water

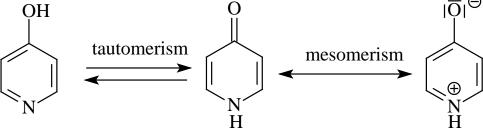
Their UV spectra are similar to of benzene.

There are group vibrations in their IR spectra: pyridine counts to monosubstituted benzene, in respect to the fingerprint region of 700-900 cm⁻¹


Their NMR spectra:

Chemical properties


1/ Acid-base properties


The compounds are stable against acids (salt formation), while are somewhat labile to bases (hydrolysis), except for pyridine. Base sensitivity increases by the number of heteroatoms. Pyridine is of basic property – introduction a second N decreases basicity.

2/ Tautomerism

This is function of solvent, of pH, of structure, and of functional group(s)

vinylogous lactim

vinylogous lactam

there is no tautomerism
$$N$$
 $\stackrel{\bigcirc}{\longrightarrow}$ N $\stackrel{\longrightarrow}{\longrightarrow}$ N $\stackrel{\longrightarrow}{\longrightarrow}$ N $\stackrel{\longrightarrow}{\longrightarrow}$ N $\stackrel{\longrightarrow}{\longrightarrow}$ N

$$XH$$
 XH
 YH
 YH

50% ratio of it

Diazotization if the amino group is possible, proving that the equilibrium is shifted to the amino form **in highly acidic conditions**. The 2- or 4-diazonium derivatives can be decomposed easily, while the 3-diazonium derivative is stable.

$3/S_FAr\ reactions$ It takes place with difficulties, and into β position only

Br
$$Br_2$$
 $Hg(O-C-CH_3)_2$ $HgO-C-CH_3$

KNO₃ * H_2SO_4/SO_3 * $SO_3/cc.H_2SO_4$ Friedel-Crafts reaction does not run

NO₂ with low yield $SO_3/cc.H_2SO_4$ O twin ionic structure

* Sulfur trioxide absorbs the water generated in the reaction. KNO₃ is less volatile, than HNO₃. HNO₃ is generated in the reaction mixture.

Pyridinium ion withdraw electrons from ring carbons even more.

Pyridine reacts in S_EAr reactions with difficulties due to two reasons:

- a) electron density is decreased in α or in γ -positions especially, the least in β -position
- b) Protonation of the N atom (NH⁺) increases electronegativity of N, thus withdrawing electrons from the ring carbons even more.

4/ S_NAr reactions

It takes place in α - and γ -positions mainly due to the lower electron density in these

positions

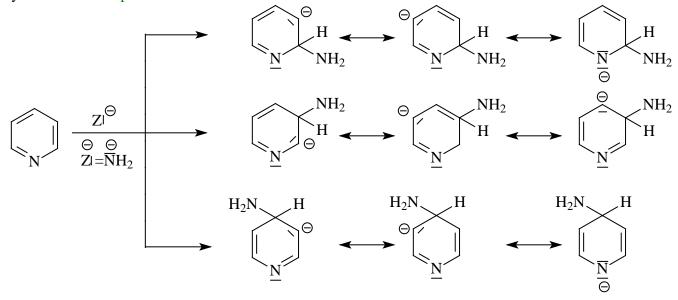
NaH is deprotonating the amidine NH₂, resulting in H₂.

The reaction becomes irreversible, since H⁻ is the leaving group, and it reacts with

α-substitution: the proton source NaH.

Regioselective α - and γ -substitution

$$\begin{array}{c|c} & & & \\ & & & \\ & N & & \\ & N & \\ & CH_3 & & \end{array}$$


$$\begin{array}{c|c} & \text{alkyl pyridinium salt} \\ & \text{H}\overline{\bigcirc}|M^{\oplus} \\ & \text{KCN} \\ & \text{N}\equiv C \\ & \text{H} \\ & \text{OH} \\ & \text{CH}_{3} \\ & \text{OXidation} \\ & \text{CH}_{3} \\ & \text{HX} \\ & \text{CH}_{3} \\ & \text{HX} \\ & \text{CH}_{3} \\ & \text{CH}_{4} \\ & \text{CH}_{5} \\ & \text{CH$$

CI
$$KNH_2/NH_3$$
 liq.
 $-333 \, ^{\circ}C$
 $-HCI$

3,4-dehydropyridine
("hetaryne")

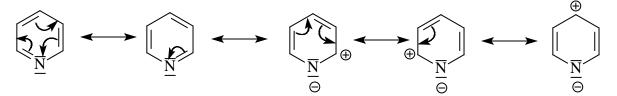
 $+NH_3$
 $+NH_2$
 $+NH_3$
 $+NH_3$

Pyridine in nucleophilic reactions

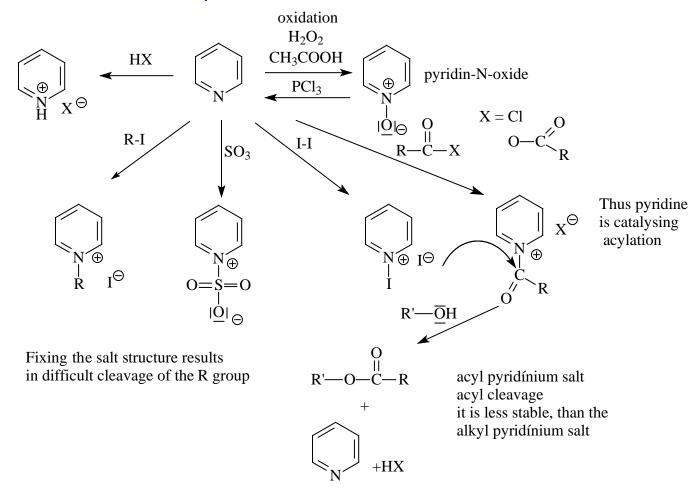
Pyridine in electrophilic reactions

In ground state

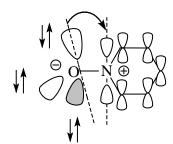
There are lower electron densities in α - and γ -positions


In nucleophilic reactions

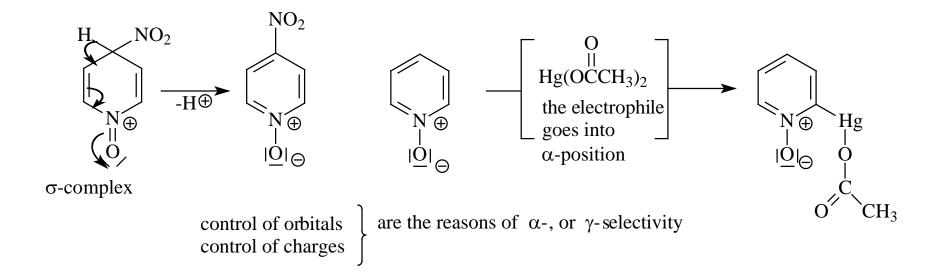
The ring N causes $-I\alpha$ >-I γ , the β carbon does not react. The negative charge in the intermediate can appear on the N, as well.

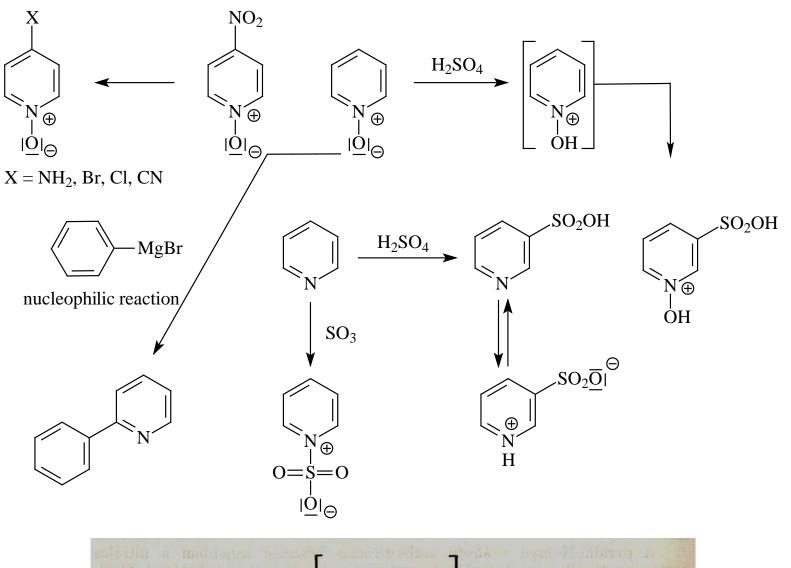

In electrophilic reactions

The relatively highest electron density is found on the β ring carbon, since there is no positive charge on the N, and moreover, there is no positive charge in any mesomers if β -substitution takes place.


Pyridine in ground state

5/ Reactions at a lone pair of electrons


Reactions of pyridin-N-oxide



One of the nonbonding orbitals of oxygen can be coplanar (in the same plane) to the combining p AO-s of the ring atom. Thus, the +M effect of the oxygen is overcompensating the -I effect of the nitrogen, resulting in electron richness in α - és γ - positions of the ring. One electron is excited to the LUMO orbital. Size of delocalisation is increased.

Not at 300 °C-on, like for pyridine

 $\triangle t = 200 \, ^{\circ}\text{C}$ \longrightarrow the difference in reactivities is 10^{8} times

$$\begin{array}{c|c} & C_6H_5MgBr \\ \hline N \oplus \\ :O \ominus \end{array} \qquad \begin{array}{c|c} C_6H_5 \\ \hline \end{array} \qquad \begin{array}{c|c} C_6H_5 \\ \hline \end{array} \qquad \begin{array}{c|c} -HOMgBr \\ \hline OMgBr \end{array}$$

6/ Addition reactions

The Diels-Alder reaction has a very complex mechanism with pyridine, the reaction is not concerted (asynchronous) and the final product is formed by aromatic stabilization of the previous, coloured intermediate.

yellow product

7/ Reduction

$$\begin{array}{c|c}
\hline
 & \text{Ni or Pd} \\
\hline
 & H_2
\end{array}$$
piperidine

Reduction is the easiest, if the compound has strong electron absence.

This system can be reduced even more easily, since it has stronger electron absence \longrightarrow reduction takes place in α - or in γ -positions

It is a biochemical H-transfer agent, main ingredient of coenzymes NAD, NADH

8/ Oxidation

The stronger the electron absence, the more difficult is the oxidation.

There is no ring opening for pyridine by oxidation.

Formation of N-oxide is possible from pyridine.

9/ Polymerisation

It does not run, in the contrary of five-membered heterocycles.

There is active H at α - and γ -methyl groups

for heterocycles with $\pi\text{-electron}$ deficiency

$$\begin{array}{c} R \\ O \\ CH_2-H \\ \hline \end{array}$$

$$\begin{array}{c} R \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} R \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

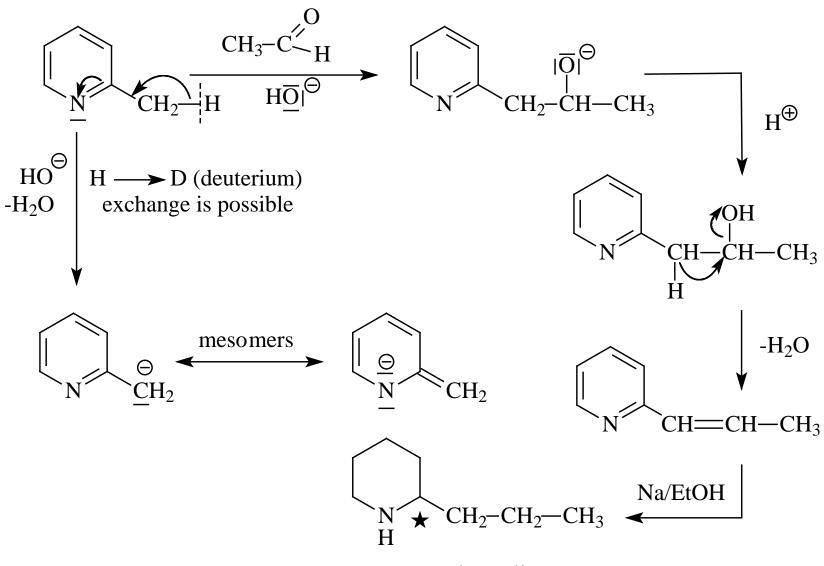
$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$


$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

$$\begin{array}{c} CH_2 \\ HO \\ CH_2 \\ \hline \end{array}$$

10/ Reactions of the active C-H group

racemic coniin

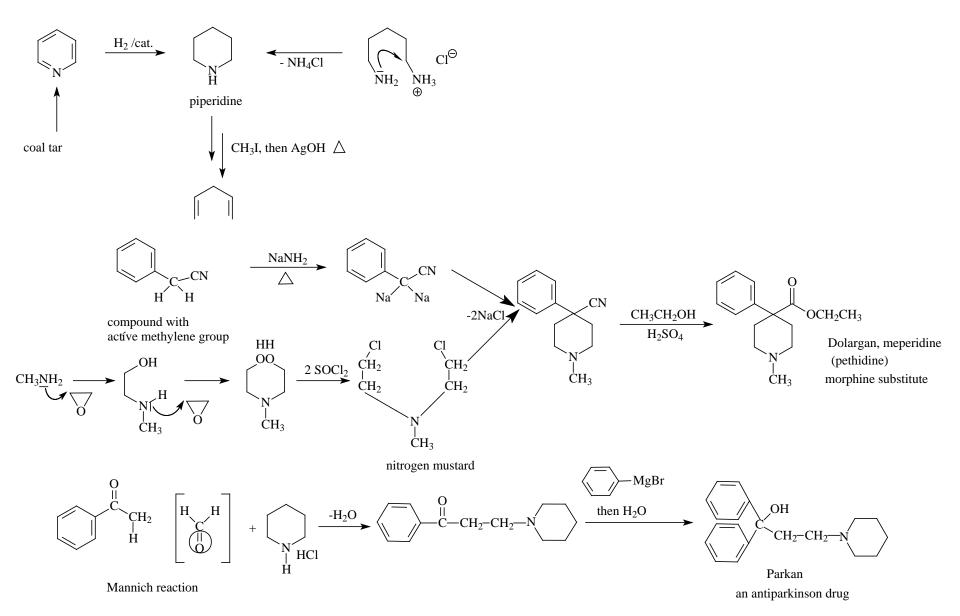
More important derivatives

nicotine: the very poisonous alkaloid of tobacco (Nicotiana tabacum)

isonicotinic acid

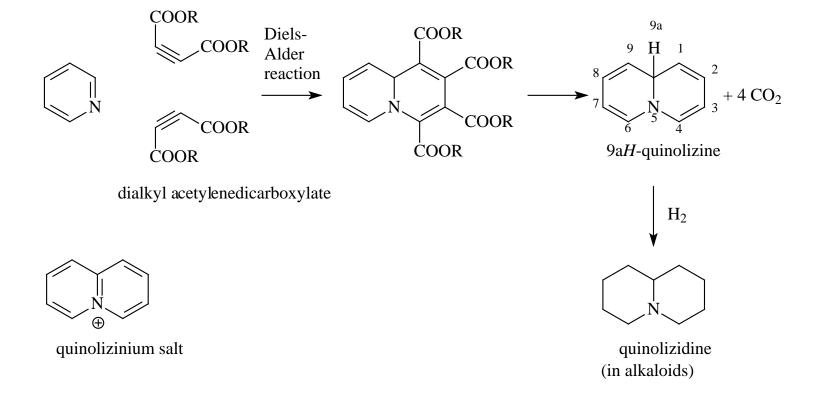
chloropyramine (Synopen) an antihistaminic drug

isonicotinic acid hydrazide, INH first drug of tuberculosis, 1952

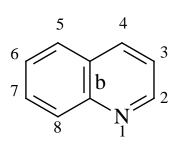

pyridoxine -CH₂OH

(pyridoxol vitamin B₆)

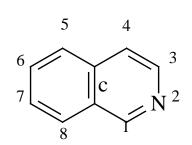
their phosphate ester is used in coenzymes of transaminating and of redoxy reactions

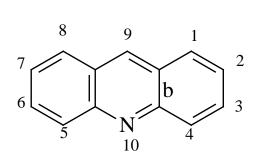

coenzyme complex belonging to the vitamin B group

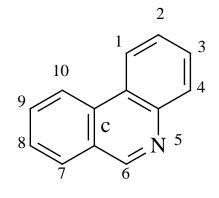
pyridoxamine —CH₂-NH₂

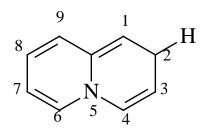


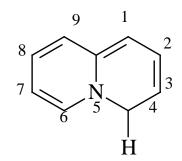
Indolizine, indolizidine

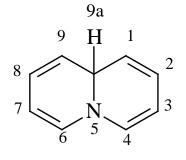

Quinolizine, quinolizidine

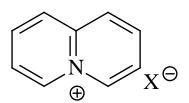

The benzocondensed derivatives of pyridine


quinoline benzo[b]pyridine


isoquinoline benzo[c]pyridine

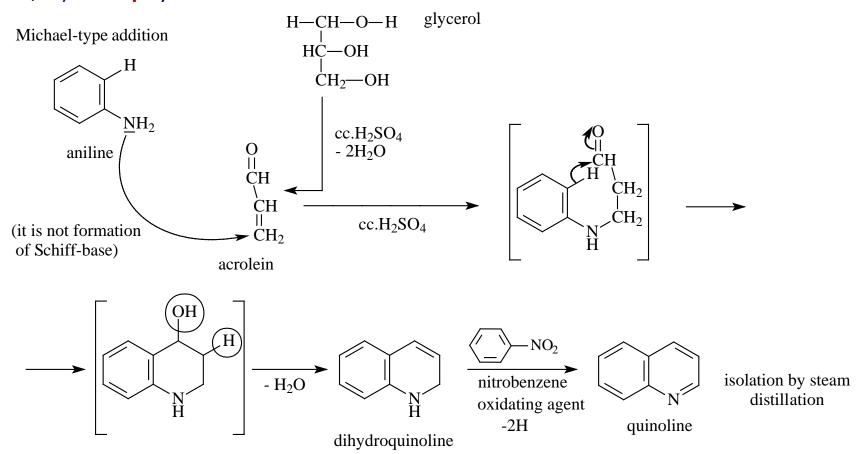

acridine benzo[*b*]quinoline


phenanthridine benzo[c]quinoline


2*H*-quinolizine

4*H*-quinolizine

9a*H*-quinolizine



dehydroquinolizinium salt

Quinoline

Preparations

1/ By **Skraup** synthesis

isolation of quinoline may take place from coal tar

2/ By Döbner-Müller process

Chemical properties

These are similar to of pyridine: S_E reaction takes place at the carbocycle, in position 5, or 8 S_N reaction takes place at the heterocycle, in position 2, or 4

$$\begin{array}{c|c} S_E & S_N \\ \hline 5 & \downarrow 4 \\ \hline \\ 8 & N \end{array}$$
 bromination nitration sulfonation sulfonation

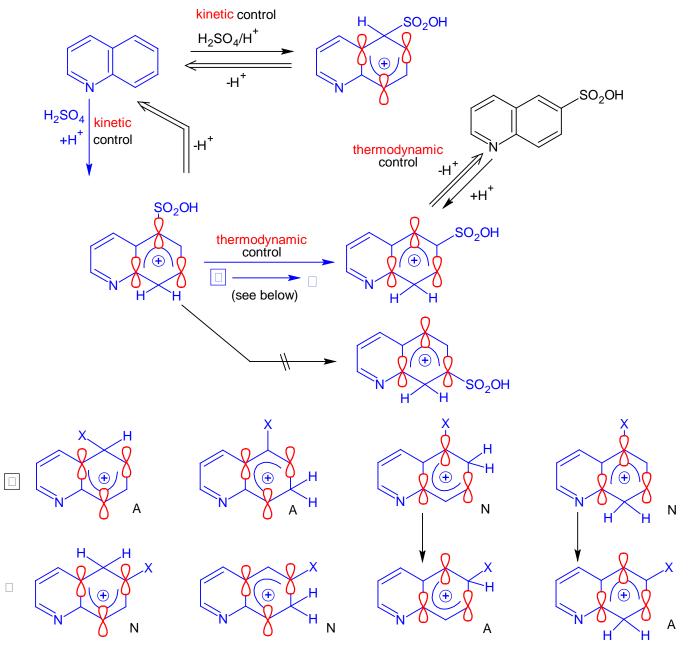
 $S_E Ar$

1/ Oxidation

oxidation: the carbocycle is oxidized in basic medium, while the heterocycle is oxidized in acidic medium

the carbons of heterocycle have low electron density, therefore oxidation of the carbocycle takes place in neutral/basic medium. Protonation of the N helps improving acidity of the heterocycle, therefore phthalic acid is prepared in acidic medium.

HO


HO.

reduction: depends on catalyst and solvent

3/ Electrophilic reactions

$$E = SO_2OH$$

$$E = SO_2OH$$

A: advantageous N: not preferred

4/ Nucleophilic reactions **KCN** CN C_6H_5 Chichibabin reaction main product H₃O[⊕] NaNH₂ NH_2 \oplus COOH NH_2 CH₃I oxidation by -LiH nitrobenzene C_6H_5 UV light PCl_5 CH_3 HO. HO⊖ ÒН **KCN** CNÇN Cl PCl₅ oxidation ĺΘ NH_3 ĊH₃ ĊH₃ UV light $NH_{3} \\$ OH NH_2 ÇN HO⊖

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

More important derivatives

drug against gout and joint diseases

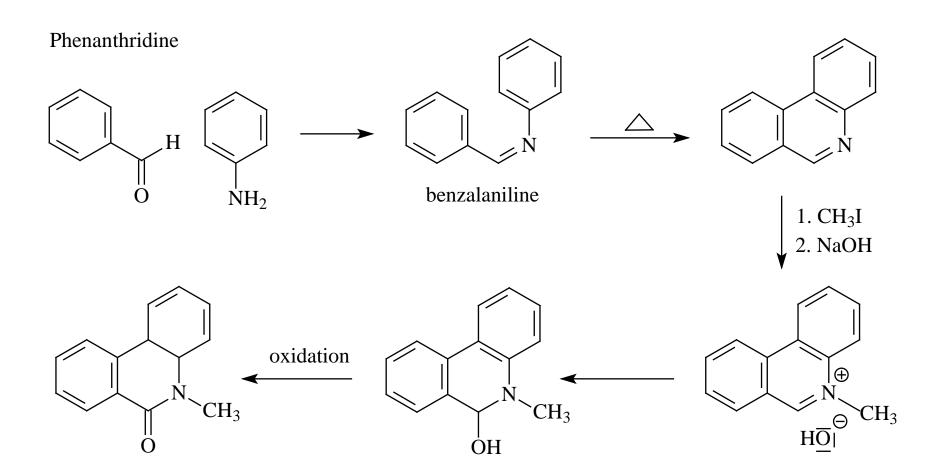
$$\begin{array}{c} S_N \ (NaNH_2) \\ \downarrow \\ O \\ H \end{array}$$
 dehydration
$$\begin{array}{c} S_E \ mainly \\ (nitration) \\ \downarrow \\ S_E \end{array}$$

drugs and dyes with acridine skeletone

Plasmochin (Chloroquin): against malaria. There were many patients infected with malaria during the II. World War in Japan, due to the tropical climate. There was international cooperation for drugs against malaria: 100 thousand compounds were tested during 3 years, and 11 compounds became drugs.

6 N_5 4 3

8-Hydroxyquinoline (Chinosan)


1,5-naphthiridine pyrido[3,2-*b*]pyridine

1,8-naphthiridine pyrido[2,3-*b*]pyridine

H → Al, Fe makes insoluble complexes with heavy metals (see analytical chemistry)

alkaloids with quinoline skeletone (see alkaloids)

$$\begin{array}{c} \text{OH} \\ \text{NH}_2 \\ \text{O} \\ \text{CH} \end{array} \xrightarrow{\text{CH}_2} \xrightarrow{\text{Skraup}} \xrightarrow{\text{synthesis}} \begin{array}{c} \text{OH} \\ \text{NN} \\ \text{Cl}_2 \\ \text{SEAr} \end{array} \xrightarrow{\text{Cl}_2} \xrightarrow{\text{NN}} \begin{array}{c} \text{L}_2 / \text{KI} \\ \text{NN} \\ \text{Cl}_2 \\ \text{SEAr} \end{array} \xrightarrow{\text{Cl}_2} \xrightarrow{\text{NN}} \begin{array}{c} \text{L}_2 / \text{KI} \\ \text{NN} \\ \text{Cl}_3 \\ \text{NN}_2 \\ \text{CH} \\ \text{NN}_2 \\ \text{CH} \\ \text{NN}_2 \\ \text{CH} \\ \text{O} \\ \text{O} \\ \text{NN}_2 \\ \text{O} \\ \text{O} \\ \text{NN}_2 \\ \text{O} \\ \text{O} \\ \text{NN}_2 \\ \text{NN}_2 \\ \text{CH}_3 \\ \text{O} \\ \text{NN}_2 \\ \text{CH}_3 \\ \text{O} \\ \text{NN}_2 \\ \text{CH}_3 \\$$

drugs with trypanocidal activity

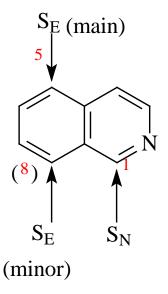
Isoquinoline

Origin of it is from coal tar.

Preparations

1/ Bischler-Napieralski synthesis

$$\beta\text{-phenylethylamine} \begin{picture}(10,10) \put(0,0){\line(1,0){10}} \put(0,0)$$


$$\begin{array}{c|c} & & & \\ \hline -H_2O & & \\ \hline \end{array}$$

$$\begin{array}{c|c} & & \\ \hline \text{Pd} / 160 \text{ }^{\circ}\text{C} \\ \hline \text{dehydrogenation} \\ & & \\ \hline -PdH_2 \\ \text{(palladium hydride)} \\ \hline \end{array}$$

2/ By Pictet-Spengler synthesis

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{Pd} / 160 \text{ °C} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{R} \\ \end{array}$$

Position 6 is activated by the methoxy groups, similarly to the biosynthesis.

Chemical properties

The chemical properties are similar to of pyridine

 S_E the carbocycle reacts mainly - bromination, nitration, sulfonation S_N the heterocycle reacts in position C-1

1/ By oxidation

2/ By reduction

The carbons of heterocycle have low electron density, therefore oxidation of the carbocycle takes place in neutral / basic medium. Protonation of the N helps improving acidity of the heterocycle, therefore phthalic acid is prepared in acidic medium.

OH OH
$$H^{\oplus}$$
 H^{\oplus} H^{\odot} H^{\odot}

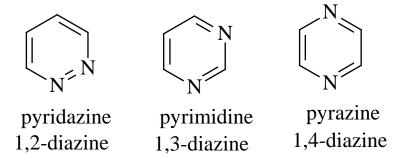
3/ By electrophilic reactions

$$E = SO_2OH$$

$$E = SO_2OH$$

4/ By nucleophilic reactions

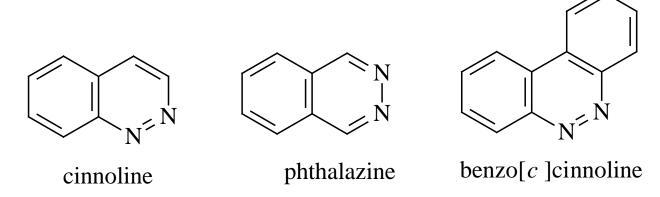
More important derivatives


By Zoltán Földi CHINOIN industrial synthesis

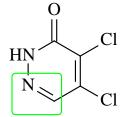
muscle relaxant drug

Six-membered heterocyclic compounds with two or more heteroatoms and their derivatives with condensed ring system

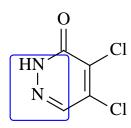
Compounds with two nitrogens


I/ Azines and its derivatives

Similar heteroaromatic compounds with oxygens or sulfur atoms are not important, their partial or fullly saturated derivatives only. Introduction of the second nitrogen makes the derivative with even more π -electron deficient.


Pyridazine and its derivatives

Structure



Preparations

Schiff's base structural unit

Hydrazone structural unit

$$R \xrightarrow{Q^{\bullet}} H_2N - R''$$

hemiaminal

Schiff's base (N-substituted imine)

R: alkyl, aryl R': alkyl, aryl, H R": alkyl, aryl

$$R = \begin{pmatrix} \mathbf{\mathring{N}} \\ + \mathbf{H}_2 \mathbf{\mathring{N}} - \mathbf{\mathring{N}} \mathbf{H} \mathbf{R'} \end{pmatrix}$$

hydrazone

Amide structural unit

Hydrazide structural unit

$$\xrightarrow{-H^+/-X^-} R \xrightarrow{O^{\bullet}} NHR'$$

amide

R: alkyl, aryl

R': alkyl, aryl,

X: halogen, OC - R

$$R \xrightarrow{\mathring{\mathbf{O}}_{\bullet}} + H_{2}\mathring{\mathbf{N}} - \mathring{\mathbf{N}}HR' \longrightarrow R \xrightarrow{\mathring{\mathbf{O}}_{\bullet}}$$

$$NHNHR'$$

hydrazide

Mechanism

$$\begin{array}{c} O \\ O \\ O \\ O \\ CI \end{array}$$

$$\begin{array}{c} HO \\ O \\ CI \end{array}$$

$$\begin{array}{c} HO \\ O \\ O \\ O \\ O \end{array}$$

$$\begin{array}{c} CI \\ O \\ O \\ O \end{array}$$

$$\begin{array}{c} HO \\ O \\ O \end{array}$$

$$\begin{array}{c} CI \\ O \\ O \end{array}$$

$$\begin{array}{c} HO \\ O \end{array}$$

$$\begin{array}{c} HO$$

$$\begin{array}{c} OH \\ N \\ Cl \\ \end{array}$$

lactim

lactam

ÓН

$$Ar - \stackrel{\bigoplus}{N \equiv N} \longrightarrow Ar - \stackrel{\frown}{N = N} \stackrel{\bigoplus}{\oplus}$$
electrophile

$$\begin{array}{c|c} CH_3 & O & & O & \\ \hline & N & N & N \\ \hline & O & N & \\ \hline & CH_3 & & \\ \hline & CH_3 & & \\ \hline & CH_3 & & \\ \hline \end{array}$$

pyrimido[5,4-c]cinnoline ring system

phthalic anhydride

phthalic acid hydrazide

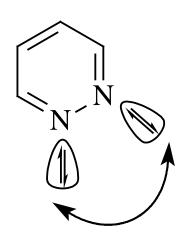
N-alkylphthalimide

phthalic acid hydrazide

O Cl NH-NH₂

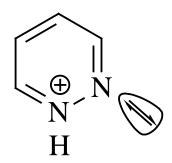
NH POCl₃
NH
$$\frac{150 \text{ °C}}{\text{Cl}}$$
O Cl NH-NH₂
NH-NH₂

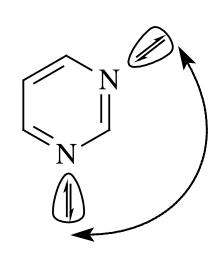
Nepresor decreasing blood pressure

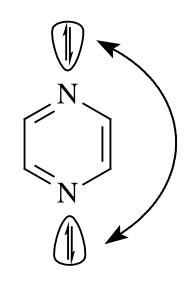

There are many drugs with phthalazine ring system:

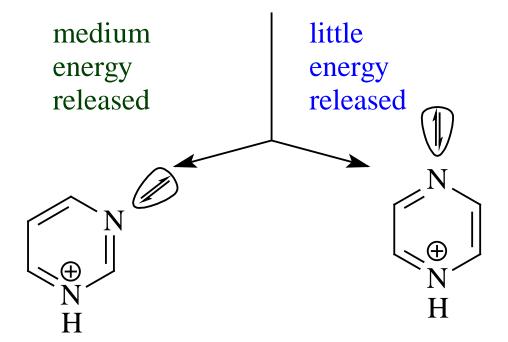
Aprezolin renal dilatator

Basic strength in aqueous solution


pK_a values for the conjugated acids of the bases


	strong repulsion	medium repulsion	weak repulsion
pK _a values	2.3	1.3	0.7
basicity	pyridazine >	pyrimidine >	pyrazine


strong repulsion



medium repulsion

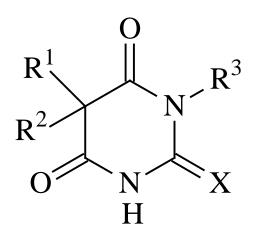
weak repulsion

Pyrimidine and its derivatives

Preparations

addition step

5. OR +
$$H_2N$$
 NH ON NH

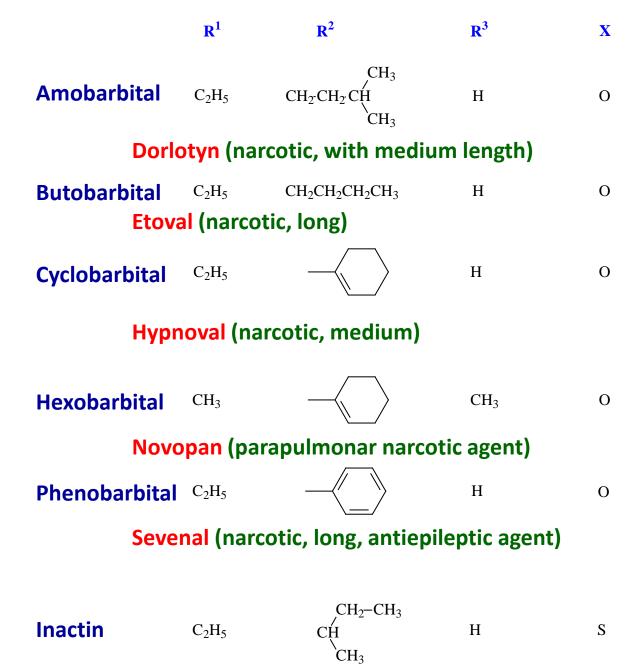

6. OR + H_2N NH

7. R OR + H_2N NH

8. R OR H R NH

9. R NH

hyperthyreotic compound



Barbituric acid derivatives

The barbiturate name is improper, can be applied for salts only. Uses are against insomnia (usually not for surgical uses).

Barbituric acid itself is without effects.

long medium short ultrashort The efficient period depends on the excretion

Venobarbital (parapulmonar narcotic agent)

O C OEt
$$CH_2$$
 $1.9OEt$ R^1 $COEt$ R^2 $COEt$ $COEt$

derivative

$$R^{\frac{1}{2}} CCOOEt + H-N R C= X \xrightarrow{C_2H_5ONa} R^{\frac{1}{2}} COOEt + H-N R R^{\frac{1}{2}} COOET + H-N$$

$$O = O = O = CH - (CH_2)_n - CH_2 - X$$

$$O = O = O = O = CH - (CH_2)_n - CH_2 - X$$

$$R-CH=CH-(CH_2)_n-CH_2$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O$$

$$O \longrightarrow OEt + X-(CH_2)_n-X \longrightarrow OEt$$

$$\begin{array}{c|c}
O & O \\
EtO & O \\
\hline
CCH_2)_n & OEt \\
O & O
\end{array}$$

-OEt

-OEt

$$\begin{array}{c} NH_2 \\ H_2N \\ X \end{array}$$

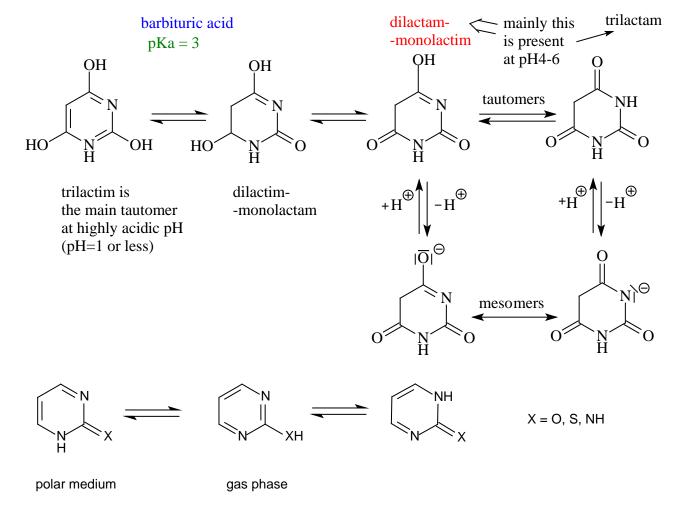
$$X: O, S, NH$$

Chemical properties

H
NH
$$_{0}$$
 $_{0}$
 $_{1,3\text{-diazacyclohexane}}^{0}$
 $_{1,3\text{-diazacyclohexane}}^{0}$

1. Pyrimidine is a weak base, pKa =1.3

It is able to participate in nucleophilic reactions:


OH→Cl; Cl →H

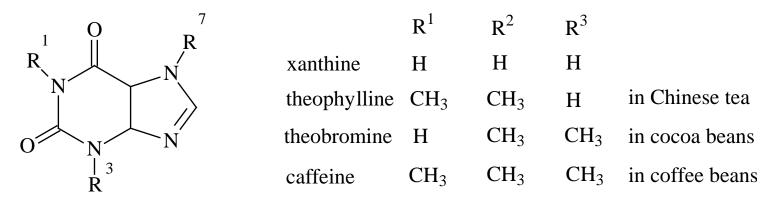
- 2. Electrophilic reactions do not run.
- 3. Centre No 5 is the most reactive, it is an active methylene group in barbituric acid. But it is impossible to run alkylation or arylation in centre No 5 of barbituric acid after ring closure, since the alkyl or aryl group attacks the heteroatoms only.

4. Resists oxidation: the substituents are oxidised only

$$\begin{array}{c|c} CH_3 & O \\ \hline N & oxidation \\ \hline N & \hline KMnO_4 & N \end{array}$$

5. There is tautomerism at hydroxy- and at aminoderivatives, e.g.,

The tautomeric equilibrium depends on temperature and solvent strongly.
Rate of N-alkylation is higher, than rate of O-alkylation.


Usually more than one tautomer are present in crystalline form, the actual main tautomer depends on the isolation conditions.

Benzocondensed derivatives of pyrimidine

- HI

More important derivatives

7*H*-purine derivatives

Each compound can be found in all of these plants, but the main component is characteristic. They have diuretic effect.

Synthesis of uric acid and of purine

These are compounds isolated in the XVIII. Century (Scheele, 1776). The following synthetic method for purine was introduced by E. Fischer (1898):

Another synthesis of a purine derivative is Traube's method (1900):

$$\begin{array}{c} OH \\ NH_2 \\ NH_2 \\ NH_2 \end{array} \qquad \begin{array}{c} H \\ HO \\ \end{array} C=O \begin{array}{c} O \\ HN \\ NH_2 \\ \end{array} \qquad \begin{array}{c} N \\ N \\ NH_2 \\ \end{array} \qquad \begin{array}{c} N \\ N \\ NH_2 \\ \end{array}$$

Compounds with **purine ring** system

Synthesis of theofilline (Traube synthesis)

theofilline

Synthesis of theobromine (Traube synthesis)

$$\begin{array}{c} 2. \longrightarrow Cl \\ N \\ N \end{array}$$

$$\begin{array}{c} N \\ N \end{array}$$

(7*H*)-9*H*-imidazo[4,5-*d*]pirimidin (unusual, biogenetic numbering)

Purine

More important derivatives:

- guanine
- adenine
- xanthine
- theofilline
- theobromine
- caffeine

9*H*-purine derivatives

purine bases

$$N = N$$

$$N$$

adenine

RNS DNS

$$\begin{array}{c|c} O & OH \\ \hline N & N \\ N & N \\ \hline N & N \\ N & N \\ \hline N & N \\ N & N \\ \hline N & N \\ N & N \\ \hline N & N \\ N & N \\ \hline N & N \\ N & N \\ N & N \\ \hline N & N \\ N & N$$

guanine

RNS DNS

Vitamin B₁ Thiamine, aneurine

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Eykmann (1896); absence of it may cause disease beri-beri.

It was isolated at first by Funk from rice bran. Peeled rice may cause beri-beri.

It gives positive thiochrome reaction

Pteridine and its derivatives

folic acid
$$COOH$$

OH

OH

NH—C—H

CH2

NH—CH2

COOH

pteridine

pteridine

pterior part p-aminobenzoic acid

pteroyl group

Folic acid is an important vitamin: its N-formyl derivative builts the C₁ unit in biosyntheses

$$\begin{array}{c|c} \hline HO-CH \\ \hline 3 \\ \hline CH_2 \\ \hline 0 \\ \hline H_3C \\ \hline 0 \\ \hline \\ Vitamin \ B_2 \\ \end{array} \begin{array}{c} CH_2OH \\ \hline HO-C-H \\ \hline \\ HO-C-H \\ \hline \\ HO-C-H \\ \hline \\ CH_2OH \\ \end{array}$$

take place by prosthetic groups of enzymes (flavoproteide enzymes, e.g., FAD)

Compounds with **pyrimido-pyrimidine ring** system

$$HN$$
 $COOCH_3$
 $COOCH_3$

$$\begin{array}{c|c} COOCH_3 & COOCH_3 \\ HN & N \\ S & N & N \\ H & CH_3 & S & N & N \\ CH_3 & CH_3 & CH_3 \end{array}$$

regioisomers

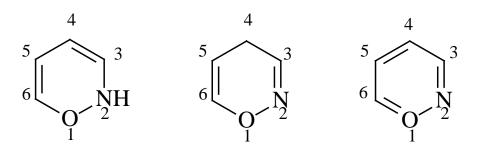
regioisomers

Pyrazine and its derivatives

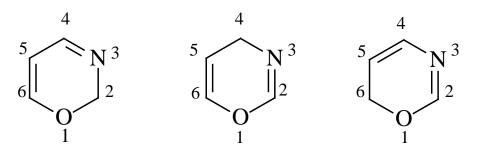
Benzocondensed derivatives of pyrazine

o-phenylene diamine dimethylglyoxal

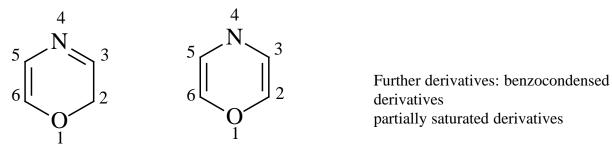
2,3-dimethylquinoxaline


$$\frac{O}{N}$$

$$\frac{O}$$


dibenzophenazine

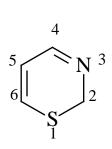
Compounds with two different heteroatoms


I/ Oxazine and its derivatives

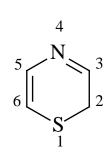
2*H*-1,2-oxazine 4*H*-1,2-oxazine 6*H*-1,2-oxazine

2*H*-1,3-oxazine 4*H*-1,3-oxazine 6*H*-1,3-oxazine

2H-1,4-oxazine 4H-1,4-oxazine


$$\begin{array}{c} CH_3O \\ CH_3O \\$$

$$\begin{array}{c|c}
 & NH \\
RO & OR & O
\end{array}$$


acetals of β -acetylaminoketones

II/ Thiazine and its derivatives

2*H*-1,2-thiazine

2*H*-1,3-thiazine

2*H*-1,4-thiazine

4*H*-1,4-thiazine

7- amino-cephalosporanic acid

-NH₂

Cephalosporin C antibiotic drug

Cephalosporium fungi species

Antibiotics: microorganisms (fungi) are producing against other microorganisms (bacteria)

phenothiazine

many important drugs have phenothiazine ring system (neuroleptics, anthelmintic agents)

chloropromazin (Hibernal, Largactil, Plegomazin)

neuroleptic drug

 OCH_3

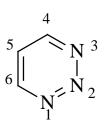
OCH₃

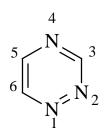
-OCH₃

$$\begin{array}{c} O \\ C - CH_2 - N \\ CH_3 \end{array}$$

$$\begin{array}{c} CH_2 - CH_2 - CH_2 - CH_2 - O - C \\ N \end{array}$$

$$\begin{array}{c} O \\ N - CH_2 - CH_2 - O - C \\ N \end{array}$$


Ahistan (antihistaminic agent) prepared at first by O. Clauder


Frenolon (original Hungarian drug) neuroleptic drug

There are phenothiazine dyes (methylen blue), and other benzocondensed derivatives.

Compounds with three heteroatoms

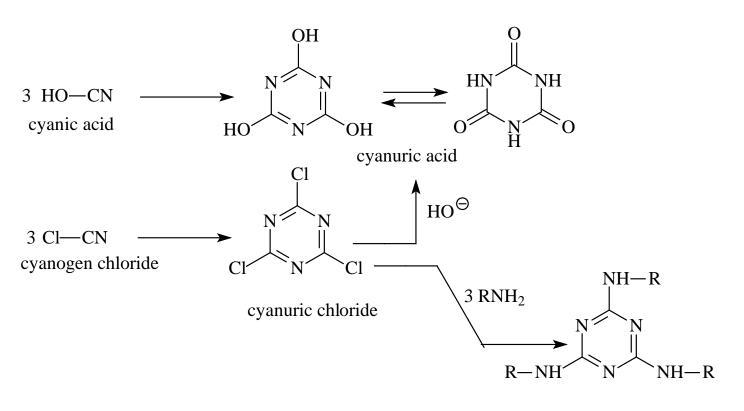
I/ Triazines

$$\begin{array}{c|c}
4 \\
5 \\
6 \\
 & 1
\end{array}$$

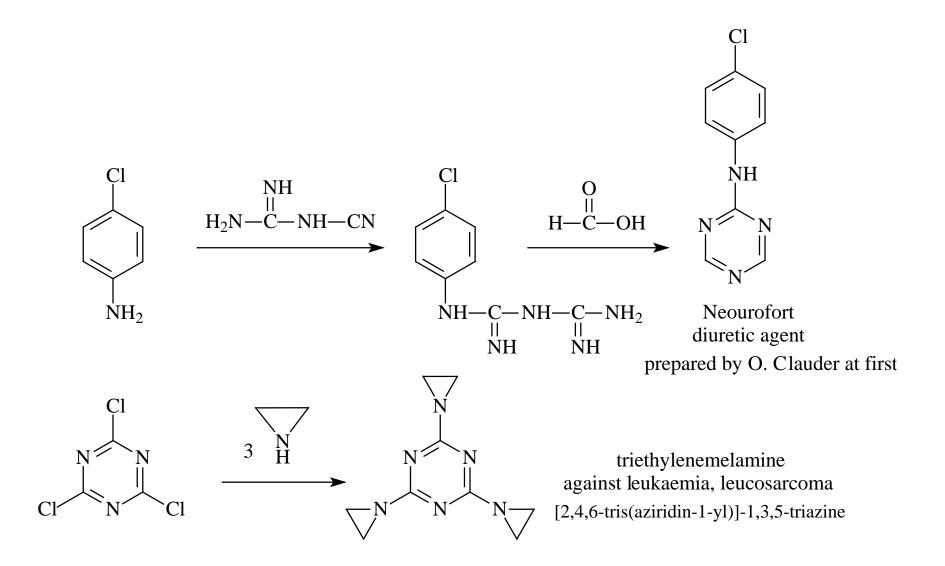
1,3,5-triazine / sym-triazine (symmetric)

3 HN=C
$$_{\rm H}^{\rm NH_2}$$
formamidine

6 NaNH₂


3 HN=C $_{\rm H}^{\rm NN}$

6 NaNH₂


3 Na₂N-CN

+ 6 RX

sec. amines

important raw material of plastic industry

II/ Thiadiazines

$$\begin{array}{c|c} Cl & H \\ O & N \\ H_2N - S & O \\ O & O \end{array}$$

hydrochlorothiazide diuretic agent

2H-1,2,4-benzo[e]thiadiazine

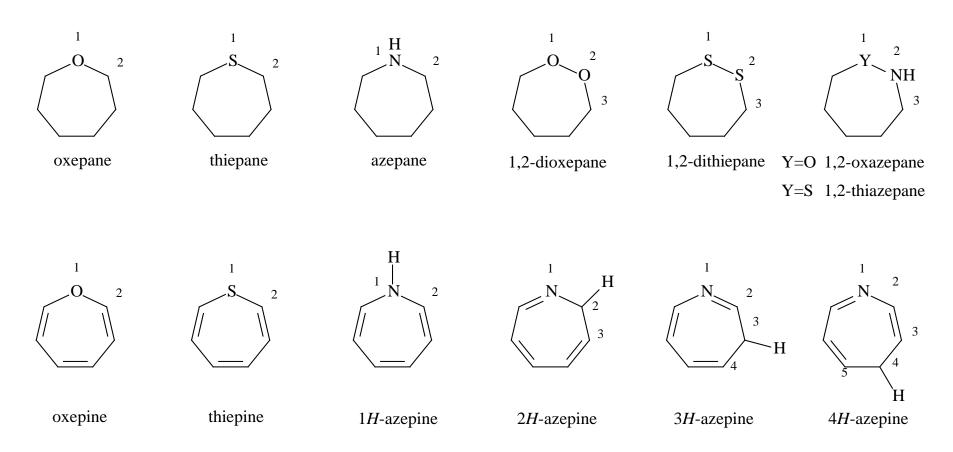
$$\begin{array}{c} Cl \\ NH_2 \\ ClO_2S \\ SO_2Cl \\ \end{array} \begin{array}{c} NH_3 \\ NH_3 \\ NH_2 \\ H_2N-O_2S \\ \end{array} \begin{array}{c} NH_2 \\ SO_2-NH_2 \\ \end{array} \\ \begin{array}{c} H \\ NH_2 \\ NH_2$$

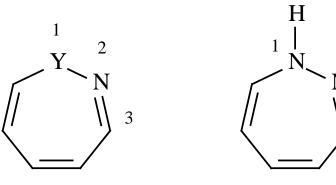
$$\begin{array}{c|c}
Cl & NH-CHO \\
H_2N-O_2S & SO_2-NH_2
\end{array}$$

$$\begin{array}{c|c}
Cl & NH-CHO \\
H_2N-O_2S & SO_2-NH_2
\end{array}$$

$$\begin{array}{c|c} Cl & NH_2 \\ H_2N-O_2S & SO_2-NH_2 \\ \hline \\ Cl & N\\ H_2N-O_2S & SO_2 & H \\ \hline \end{array}$$

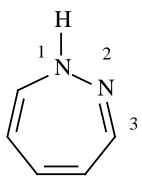
Compounds with *four* heteroatoms

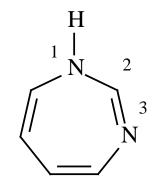

I/ Tetrazines


sym. tetrazine

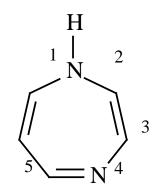
Heterocyclic compounds with seven- and eight-membered rings and their derivatives

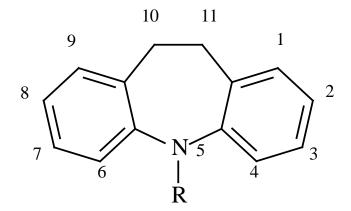
Heterocyclic compounds with sevenmembered rings

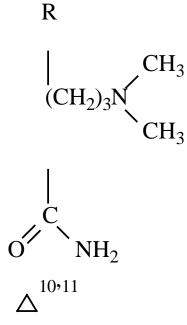

Nomenclature, some important derivatives



Y=O 1,2-oxazepine


Y=S 1,2-thiazepine


1*H*-1,2-diazepine


1*H*-1,3-diazepine

1*H*-1,4-diazepine

dibenzoazepine derivatives

Name imipramin antidepressant

carbamazepine antiepileptics

Benzodiazepine derivatives

Sedatohypnotica

Grandaxin: anxiolitics free from sedative side-effects (e.g., it can be administered before driving) (J. Kőrösi at GYKI, EGYT, 1966. Hungarian patent)

Preparation

$$CH_3O \longrightarrow CH_2CH_3$$

$$CH_3O \longrightarrow CH_3$$

$$CH_3COOH / H_2O$$

$$OCH_3$$

$$OCH_3$$

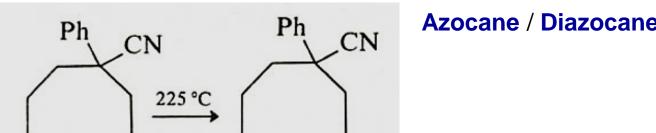
$$diisohomogenol$$

$$\begin{array}{c}
1/ \text{ H}_2\text{N} - \text{NH}_2 \text{ . HX} \\
2/ \text{ HO} \\
\end{array}$$

EtO-C
$$\stackrel{O}{\underset{CH_2}{//}}$$
 $\stackrel{PCl_5}{\longrightarrow}$ EtO-C $\stackrel{CH_2}{\underset{O}{//}}$ $\stackrel{CH_2}{\longrightarrow}$ $\stackrel{C}{\underset{O}{\longrightarrow}}$ $\stackrel{O}{\underset{CH_2}{//}}$

$$\begin{array}{c} \text{NH}_2 \\ \text{O} \\$$

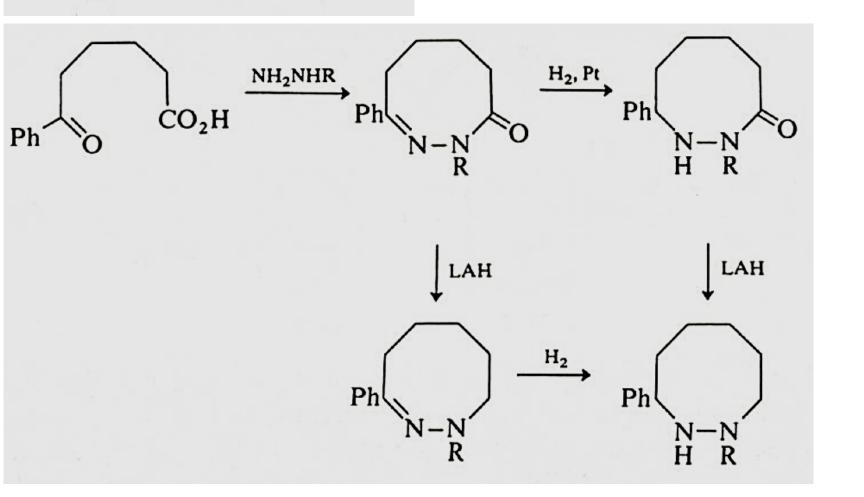
Chlordiazepoxide

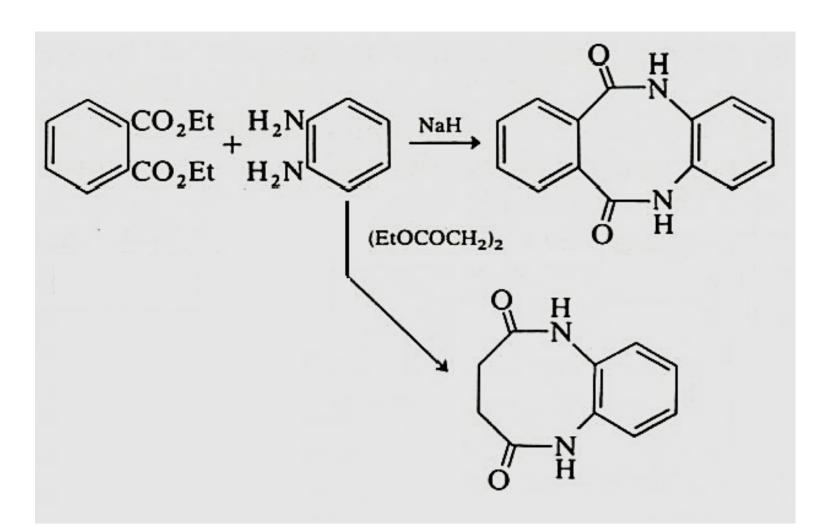

1,4-oxazepine derivative

1,4-thiazepine derivative

$$H$$
 O
 OH
 $(CH_3)_2NCH_2CH_2CI$
 $(CH_3CO)_2O$
 K_2CO_3
 OCH_3

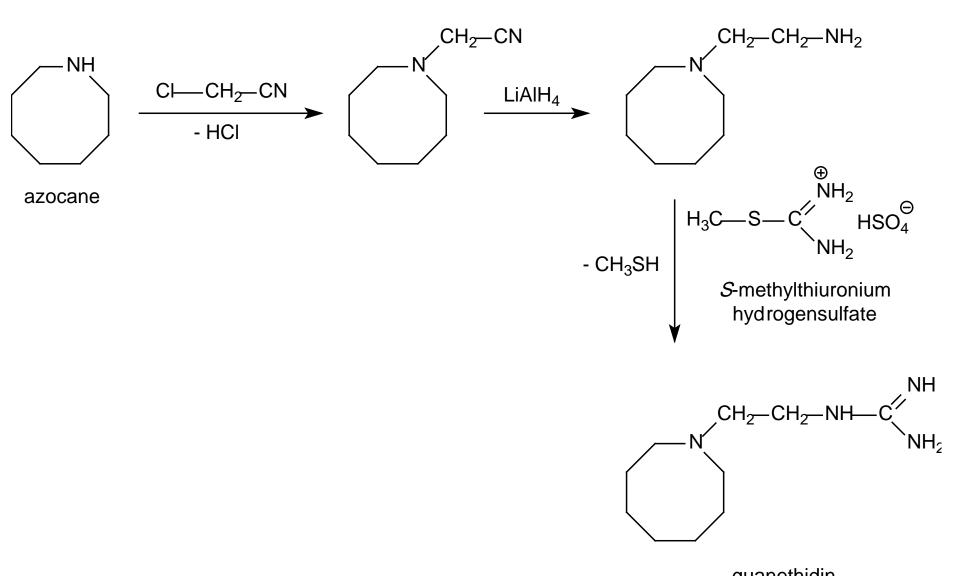
antihypertensive agent for treatment of heart disease and antiarrhythmics


Heterocyclic compounds with eightmembered rings



Me

 Me_2


Azocane / **Diazocane** derivatives

Thiocane derivatives

$$O = C \xrightarrow{\text{(CH}_2)_3 \text{Br}} \xrightarrow{\text{NaSH}} O \xrightarrow{\text{i, NaOEt}} \text{ii, hydrolysis} S \xrightarrow{\text{iii, hydrolysis}} S \xrightarrow{\text{(CH}_2)_3 \text{CO}_2 \text{Et}} S \xrightarrow{\text{(CH}_2)_3 \text{CO}_2 \text$$

guanethidin

blood pressure reducing (antihypertensive) agent