Gábor Krajsovszky Heterocyclic compounds

ISBN: 978-615-5722-01-1
© Gábor Krajsovszky

Responsible editor: Gábor Krajsovszky
Publisher's reader: István Mándity
Translated by Péter Tétényi

Department of Organic Chemistry Pharmaceutical Faculty Semmelweis University

Budapest, 2018

Acknowledgements

The editor wants to express many thanks
to Dr. István Mándity, who is Associate Professor and Director of Department of Organic Chemistry, for the careful proofreading service of the current manuscript,
as well as to Dr. Péter Tétényi, who is Assistant Professor,
for the translation to English language.
Moreover, the editor renders many thanks to Mrs. Ferenc Juhász and Ms. Nikoletta Zlatzky
laboratory assistants for drawing material of the figures.

Dr. Gábor Krajsovszky
Associate Professor
Department of Organic Chemistry

Literature used

Alan R. Katritzky, Charles W. Rees:
Comprehensive Heterocyclic Chemistry
Parts 2-3, 4-6, 7
Pergamon Press 1984
Oxford • New York • Toronto • Sydney • Paris • Frankfurt
T. Eicher, S. Hauptmann, A. Speicher:
The Chemistry of Heterocycles
Structure, Reactions, Syntheses, and Applications
Wiley-VCH GmbH 2003
Weinheim
E. Breitmaier, G. Jung:
Organische Chemie
Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur
Georg Thieme Verlag 1978, 2005
Stuttgart • New York
Clauder Ottó:
Szerves kémia II/2. Egyetemi jegyzet
Semmelweis OTE Budapest, 1980
Bruckner Győzó:
Szerves kémia III-1.
Tankönyvkiadó, Budapest, 1964
Természettudományi Lexikon - Harmadik kötet
Clauder Ottó: 'Heterociklusos vegyületek' címszó, 155-161.
Főszerkesztő: Erdey-Grúz Tibor
Akadémiai Kiadó, Budapest, 1966
Szabó László:
Szerves kémia előadások - heterociklusos vegyületek
Semmelweis OTE Budapest, 1978-1996

Three-, four- and five-membered heterocycles with one heteroatom and their derivatives

Three-membered heterocycles with one heteroatom and their derivatives

Nomenclature

Hantzsch-Widman name
Radicofunctional name
Replacement name

oxirene

oxirane
ethylene oxide
oxacyclopropane

3

dioxirane

thiirene

thiirane
ethylene sulfide
thiacyclopropane

1 H -azirine 2-azirine
 diaziridine

diazomethane

$3 H$-diazirine

thiirane derivative

Only singlet carbene (not triplet) is suitable for the reaction.

Epoxidation with peracid without catalyst

oleic acid

elaidinic acid

$20^{\circ} \mathrm{C}, 3 \mathrm{~h}$
one-step
syn-addition

$20^{\circ} \mathrm{C}, 3 \mathrm{~h}$
one-step
syn-addition

enantiomers
1:1
enantiomers
1:1

Asymmetric oxidation of alkenes Sharpless epoxidation

Knowles, Noyori, Sharpless 2001 Nobel-prize, Chemistry, chiral catalysis
A)
diastereo(enantio-)selective

B)

Baeyer strain is greater for 3-membered rings than for 4-membered ones. As a consequence of this ring opening, reactions are easier for the former ones.

Ring opening - it may occur with acid or with base Different regiochemistry: with acid: $\mathrm{S}_{\mathrm{N}} 1$-like mechanism (alkyl cation of higher order is more stable) with base: $\mathrm{S}_{\mathrm{N}} 2$ mechanism (for sterical reasons, the nucleophile attacks the carbon of lower order)

Some important derivatives

Acetylcholine: neurotransmitter of parasympathic nervous system (it can be found in the parasympathic part of the vegetative nervous system and in the central nervous system)

Four-membered heterocycles with one heteroatom and their derivatives

Nomenclature

Hantzsch-Widman name
Radicofunctional name
Replacement name

thietane

azetidine trimethylene imine azacyclobutane

oxet(ene)

thiet(ene)

1-azetine

2-azetine

azet

1,2-dithiet
1,2-dihydro-1,2-diazet

Preparation

By intramolecular ring closure

Chemical properties

Some important derivatives

β-Lactam antibiotics

- Penicillins

- Cephalosporins

Antibiotics: natural compounds produced either by microorganisms (e.g., fungi), or by a higher organism against other microorganisms (e.g., bacteria) to block the life and reproduction of the bacteria. Antibiotics are efficient in low concentration.
β-lactame ring of penicillins is sensitive to acids, bases, or penicillinase enzyme. Nowadays penicillins with broad therapeutic range also exist (see microbiology).
Cephalosporins (1948) makes the other main group of the β-lactame antibiotics. These are resistent to penicillinase enzyme.
The bacterium produces penicillinase/cephalosporinase enzyme in order to be resistent against the given penicillin/cephalosporin derivative. Thus, newer and newer penicillin/cephalosporin derivatives must be synthesized. Their total synthesis is possible, but it would be too expensive, thus new derivatives are produced by semisynthetic methods. The fermentation processes are combined by chemical methods (beginning of biotechnology).
Clavulanic acid: inhibitor of the β-lactamase with low antibiotic effect. Clavulanic acid is produced by Streptomyces clavurigeus (the same fungus also produces penicillin as well as cephamycin).
Augmentin ${ }^{\circledR}$ contains amoxycillin and potassium clavulanate.

Penicillium notatum
azetidine + [1,3]thiazidine

cepham
lactam
Cefalosporium acremonium

benzylpenicillin G-penicillin

oxacillin

cephalexin

cephalotin

Clavulanic acid

Cephalosporins ($\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{S}$)
Cephamycins ($\mathrm{X}=\mathrm{OCH}_{3}, \mathrm{Y}=\mathrm{S}$)
Penems ($\mathrm{Y}=\mathrm{S}$)
Carbapenems ($\mathrm{Y}=\mathrm{CH}_{2}$)

Thienamycin ($\mathrm{R}=\mathrm{H}$)

Five-membered heterocycles with one heteroatom and their derivatives with condensed ring systems

I/ Furan and its derivatives

Nomenclature

furan

α-furyl-

β-furyl-

α-furfurylidene-

α-furoyl-

Preparation

1/ By Paal-Knorr synthesis from dioxo compounds

Its mechanism: $\quad \mathrm{E}^{\oplus}: \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}^{\oplus}$

2/ From polyhydroxy oxocompound

Found in wheat germ, corn germ

3/ From mucoic acid

4/ By decarboxylation from dehydromucoic acid

5/ By ring synthesis from β-oxoester and from α-chloroketone

Feist-Benary

This can be the side reaction of Hantzsch reaction

Physical properties

The parent compounds (furan, pyrrole, thiophene) are poorly soluble in water, but imidazole and pyrazole are water-soluble due to hydrogene bridges

Their UV spectra are rather different from benzene
IR spectra: there are group vibrations
pyrrole has v NH band at $3400-3300 \mathrm{~cm}^{-1}$ (sharp and strong band)
${ }^{1} \mathrm{H}$ NMR spectra: the signal of $\alpha \mathrm{H}$ appears at lower δ value (more shielded), compared to the signal of $\beta \mathrm{H}$ (each within the usual aromatic range)
There are usual couplings typical for aromatic compounds.

Chemical properties

1/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

$\alpha>\beta \sigma$-complex is more stable, since more mesomeric structures can be written for it.
Friedel-Crafts alkylation

previous explanation: furan is a superaromatic compound, since the aromatic reactions take place much easier, than of benzene
current explanation: furan is much less aromatic, than benzene, since its reaction is energetically much easier, than of benzene

Nitration

cc. HNO_{3} is destroying the ring

2/ Addition reactions

1,4-addition

atoms with acetal characters

Diels-Alder reaction

3/ Other reactions

Cannizzaro reaction

Acyloin condensation

(similar to benzoin)

furyl (similar to benzyl)

Polymerisation

1,4-addition addition polymerisation

Reduction

More important derivatives

furfurol, the cheapest aromatic aldehyde

$$
\downarrow-\mathrm{H}_{2} \mathrm{O}
$$

II/ Furan derivatives with condensed rings

Nomenclature

benzo[b]furan coumarone

benzo[c]furan isocoumarone (derivatives of it are known only)

dibenzofuran
diphenylene oxide

Preparations

according to Fischer's indol synthesis

III/ Thiophene and its derivatives

Nomenclature

Preparations

1/ By Paal-Knorr synthesis from dioxo compounds

2/ From acetylene

3/ By dehydrogenation, then by ring closure

4/ According to Hinsberg

5/ From dialkyl acetylenedicarboxylate

Chemical properties

1/ By halogenation

2/ By chloromethylation

3/ By Mannich reaction

4/ By Vilsmeier formylation

5/ By Friedel-Crafts acylation

6/ Transformation to mercury derivatives

7/ By Diels-Alder (addition) reaction

8/ By polymerisation

9/ By hydrogenation

10/ By indophenin reaction

isatin

compound with blue colour
indophenin

IV/ Thiophene derivatives with condensed ring system

Nomenclature

thionaphthene benzo[b]thiophene

iso-benzothiophene benzo[c]thiophene isonaphthene

dibenzothiophene

Preparations

mercaptocinnamic acid

Chemical properties

V/ Pyrrole and its derivatives

Nomenclature

pyrrole

α-pyrryl-

β-pyrryl-

Preparations

1/ By Paal-Knorr synthesis from dioxo compounds

2/ By Hantzsch synthesis

3/ By Knorr synthesis

4/ By pyrolysis of ammonium mucoate

5/ From dehydromucoic acid through furan

6/ According to Reppe, from butyn-1,4-diol

Chemical properties

1/ Acid-base properties
a/ pyrrole, as base

b/ pyrrole, as acid

Absorption of a proton is an addition process (not $S_{E} A r$) Protonation takes place at the C-2, not at the N Protonation ceases the aromatic system, resulting in a conjugated diene with much higher reactivity. For this reason, pyrrole is sensitive to acids

Pyrrole is a weak acid - and an amphotheric compound Furan, pyrrole, thiophene are stable against bases

2/ Tautomerism

Tautomerism of hydroxy- and amino-derivatives
The hydroxy compounds exist mostly in oxo forms, the amino compounds in amino forms (\rightarrow can be diazotised)

3/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

Take place in two steps, with much greater reaction rate, compared to of benzene

$\alpha>\beta \sigma$-complex is more stable, since more mesomeric structures can be written for it.
If attack happen to β position $\mathrm{E}_{\stackrel{\oplus}{=}}^{\mathrm{H}^{\oplus} \longrightarrow}$ protonation reaction takes place.
Otherwise the electrophilic reagent attacks the β position, if the α position is occupied.

Protonation

By bromination

By chlorination

By nitration, sulfonation

By Friedel-Crafts acylation

pyrrole $>$ benzene $\left(\mathrm{SnCl}_{4}<\mathrm{AlCl}_{3}\right.$ both are electrophilic catalyst, but the latter is much more powerful, therefore the latter is not used for the acylation of pyrrole, since the reaction would be too vigorous

By Reimer-Thiemann reaction

pyrrole > benzene (reacts more easily)

At first, N-potassium salt is formed due to cc. KOH

Formation of dipyrrylmethane

analogous process to the formation of phenol resins

there are 4 pyrrole rings in the synthetic intermediates of compounds with porphin ring system

conjugate acid of dipyrrylmethene

By Fischer-Orth reaction

By Fischer-Bartholomäus reaction

4/ Transformation to heteroalkene-, or heteroalkane derivatives
By reduction reactions

\triangle^{3} - pyrroline
3 - pyrroline
Zn : electrondonor water: protondonor

\triangle^{2} - pyrroline
\triangle^{1} - pyrroline
2 - pyrroline
1 - pyrroline

By oxidation reaction

By Diels-Alder reaction

there is no reaction with pyrrole, but there is formation of adduct with hexafluoro-Dewar-benzene

By polymerisation

5/ Amphotheric properties of pyrrole

Metal derivatives and their transformations

Pyrrole does not react by nucleophilic substitution reactions

electron rich C-atom

More important derivatives

a/ monocyclic pyrrole derivatives

$$
\begin{aligned}
\mathrm{X} & =\mathrm{H} \text { proline } \\
& =\mathrm{OH} \text { hydroxyproline }
\end{aligned}
$$

pyrrolidine

pyrrolidone

vinylpyrrolidone
polyvinyl-pyrrolidone MW 5-10 thousand

$\mathrm{X}-\mathrm{H}$ addition to acetylene
b/ compounds with porphin skeletone

Porphin

- bonds in aromatic system $4 n+2 \quad n=4$
- alkene bonds (double bonds) 18π electrons

The Fe, Mg, Co salts of porphin can be found in nature.
Very stable, what is necessary for it purposes. Mp: $300^{\circ} \mathrm{C}$, red crystals

The tautomer forms can be also described by mesomers.
Each tautomer may have many mesomers.

Vitamin \mathbf{B}_{12} (cyanocobalamin)
Preparation of it was carried out from liver, from mud of canals, or by fermentation (Streptomyces griseus)
Structure determination was executed by X-ray analysis (Dorothy-Crowfort Hodgkin)
Synthesis of it was carried out by Robert Burns Woodward (Harvard University) and Albert Eschenmoser (ETH Zürich)
Vitamin B_{12} has been isolated from mud of canals by Richter Pharmaceutical Works (Budapest, Hungary) since Years 1950s. Woodward synthesized chlorophyll by total synthesis in 1965, while Woodward and Eschenmoser in cooperation prepared Vitamin B $_{12}$ in 1972-73.
Vitamin B_{12} has important role in biological methylation. It is the antidote of Anemia perniciosa (pernicious anemia). Its appearence is in deep red needles. Liver extracts were useful in this disease.
It was the first macromolecule, which structure was elucidated by X-ray analysis. There is delocalisation in Vitamin B_{12}, but it is neither a cyclic delocalised system, nor aromatic system. The current Vitamin B_{12} extract is of not synthetic origin.

The question is the following: how did these compounds appear in nature and why not other compounds were prepared by biosynthesis. There are building blocks for living organisms - hem, or chlorophyll were prepared at rather low stage of evolution. Usually the most symmetric structure is set the rest is prepared, but disorderness has always greater probability \rightarrow enthropy is increasing by having the least symmetry elements. It is selected by molecular evolution and does the job perfectly. The role of cobalt in Vitamin B_{12} : it depends on ring size. Woodward's report on it is a complete chemical thriller.

VI/ Pyrrole derivatives with condensed ring systems

Nomenclature

$1 H$-indole benzo[b]pyrrole

indoline

$3 H$-indole benzo[b]pyrrole (indolenine)

N-methylisoindole (isoindole does not exist) benzo[c]pyrrole

oxindole

indoxil

isatin

tryptamine
takes place in the biosynthesis of indolealkaloids

serotonine
5-hydroxytryptamine important for brain work

3-indolylacetic acid heteroauxin plant growing hormone

Preparations

1/ Preparation of indole

2/ Preparation of indole derivatives
a/ Fischer's indole synthesis

Mechanism of the Fischer's indole synthesis

indigo
b/ Heumann's indigo synthesis

indigo

Chemical properties

1/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

halogenation nitration sulfonation alkylation acylation

2/ Other reactions

Benzocondensed systems with five-membered heterocycle

$$
\mathrm{S}_{\mathrm{E}} \mathrm{Ar}
$$

X: NH $1 H$-indole $\quad \beta(\alpha)$
O coumarone α
S thiocoumarone $\beta(\alpha)$

advantageous
coumarone

aromatic
advantageous

\oplus
E

1H-indole and thiocoumarone
nonaromatic disadvantageous

Five-membered heterocycles with two or more heteroatoms and their derivatives with condensed ring systems

Compounds with two heteroatoms

Nomenclature

isoxazole
1,2-oxazole

oxazole
1,3-oxazole

isothiazole
1,2-thiazole

thiazole pyrazole
1,3-thiazole 1,2-diazole

imidazole 1,3-diazole

Introduction of another nitrogen \rightarrow the pyrrole-like properties are shifted to the pyridine-like properties, e.g., at basicity, water solubility.

I/ Isoxazole and its derivatives

Preparations

1/ By 1,3-dipolar cycloaddition (Huisgen)

It takes place by $4 \mathrm{n}+2$ electrons, $\mathrm{n}=1$ \rightarrow suprafacial reaction, 1,3-dipolar cycloaddition, in one step through a cyclic transition state
nitrile oxide

By 1,3-dipolar cycloaddition

a	b	c
N	N	C
N	N	N
N	N	0

R. Huisgen, Angew. Chem. 75 (1963) 604-637. 742-754.
A. Padwa, 1,3-Dipolar Cycloaddition Chemistry. Vol. 1-2. John Wiley and Sons 1984.

2/ By other ring syntheses

Chemical properties

1 / It is sensitive to bases, resulting in ring opening
It is relatively stable against acids

$\mathrm{E}: \mathrm{Br}^{+}, \mathrm{NO}_{2}{ }^{+}, \mathrm{HSO}_{3}{ }^{+}$

3/ Basic strength in aqueous solution
pK_{a} values for the conjugated acids of the bases

pK_{a} values $\quad 7.0$

2.5
2.5

1.3
basicity \quad Imidazole $\gg \quad$ Thiazole $\geq \quad$ Pyrazole $>\quad$ Isoxazole

More important derivatives

benzisoxazole benzo[d]isoxazole
$\uparrow-\mathrm{H}_{2} \mathrm{O}$

salicylaldehyde

anthranil benzo[c]isoxazole

$\uparrow \begin{gathered}\text { Sn / glacial acetic } \\ \text { acid, red. }\end{gathered}$

Oxamycin antibiotic Oxacillin semisynthetic penicillin

Penicillin: was prepared from Penicillium notatum fungus (Fleming, 1929) at first by fermentation method. It was the first antibiotic compound: 6-amino-penicillanic acid. Some microorganisms are preparing it by cleavage of the acyl group. This is useful for preparation of other semisynthetic derivatives

II/ Oxazole and its derivatives

Preparations

1/ From 1,2-bifunctional compounds

C atoms with 1., 2., 3. oxidation levels

More generally:

a.

- it is difficult to alkylate the amide nitrogen
b.

it is easy to acylate the primary amine nitrogen

Differences in saturation of the products can be reached by selection of the proper oxidation level of the starting materials.

6π-electrons

the nonbonding electron pair of O takes part in the formation of an aromatic sextet

1 due to C-O bond

Chemical properties

1/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

One of the most stable derivatives of 2-oxazoline is 2-methyloxazoline. This compound has an interesting feature, since mechanism of acyl migration (Bruckner, at ephedrine or alkaloids with tropane skeletone), as well as the ring opening due to bases or acids can be easily demonstrated.

2/ Sensitivity against bases and acids

More important derivatives

2,4-oxazolidindione

III/ Isothiazole and its derivatives

IV/ Thiazole and its derivatives

1/ Hantzsch synthesis

2/ Gabriel's preparation

(oxazole is formed without $\mathrm{P}_{2} \mathrm{~S}_{5}$)

Chemical properties

1/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

2/ $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions

3/ By oxidation

thiazole ring is resistant to oxidation

More important derivatives

2-thiazoline derivative

thiazolidine

benzo[d]thiazole
benzo[d][1,3]thiazole

penam skeletone
(condensed ring system of thiazolidine and azetidine monocycles)
$\mathrm{R}=\mathrm{H}$ 6-aminopenicillanic acid (6-APA)

benzylpenicillin
Penicillin G

Oxacillin (see at isothiazoles)

B lactam ring is unstable group, sensitive to acids, to bases, as well as to penicillinase enzyme. They are inhibitors of synthesis of cell walls. If a microorganism produces penicillinase, then it will be resistant to the given penicillin derivative \longrightarrow other derivative must be prepared. Previously, penicillin derivatives were prepared from ferment solution, adding phenylacetic acid to it, generating benzylpenicillin. Benzylpenicillin + enzyme $\longrightarrow 6-\mathrm{APA}+\mathrm{R}-\mathrm{COCl} \longrightarrow$ many thousands penicillin derivatives.
Source: Penicillium notatum, P. crysogenum bacteria. Antibiotics are more uniform compounds, than vitamins.
Antibiotics are natural compounds, produced by some microorganisms against other microorganisms, blocking the latter. Fleming observed extinction spots, thus he had hard earned the Nobel Prize.
Currently penicillin derivatives are prepared by semisynthesis methods: 6-APA is made to be produced by bacteria. This was one of the first trials of biotechnology.

V/ Pyrazole and its derivatives

Preparations

1/ By 1,3-dipolar cycloaddition (Huisgen)

2/ By isosteric replacement from isoxazole

Chemical properties

1/ Acid-base properties

Introduction of a nitrogene shifts the pyrrole-like properties to the pyridine-like properties.
weak base $\mathrm{pK}_{\mathrm{a}}=2.5$

makes a H-bridge
(pyrrole< pyrazole< imidazole< pyridine) very weak acid $\mathrm{pK}_{\mathrm{a}}=14$
(it is amphotheric compound)

2/ Tautomerism

virtual tautomerism
(equivalent tautomerism)
the two tautomers can not be
distinguished from each other

3/ $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions

substitution on the C-4:
bromination, nitration, sulfonation

More important derivatives

N-benzoyl- N-nitrozotoluidine

Methamisole

VI/ Imidazole and its derivatives

Preparations

1/ From 1,2-bifunctional compounds

R^{1}, R^{2} : alkyl groups

thiohydantoin

Edman sequencing of peptides

Chemical properties

1/ Acid-base properties

2/ Tautomerism

real tautomerism
as base

$-\mathrm{H}^{\oplus} \prod_{\downarrow}+\mathrm{H}^{\oplus}$

as acid

mesomers

3/ By $\mathrm{S}_{\mathrm{F}} \mathrm{Ar}$ reactions

(methylation, formylation by N-methyl formamide derivative)

4/ By $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions

More important derivatives

$$
\mathrm{R}=\mathrm{H}, \mathrm{alkyl}
$$

2-imidazoline derivative

imidazolidine derivative

diphenylglycolic acid

histidine
essential amino acid

Diphedan antiepilepticum

Mephenytoin $-\mathrm{CH}_{3}$
$-\mathrm{C}_{2} \mathrm{H}_{5}$

Sacerno antiepilepticum

$-\mathrm{CH}_{3} \mathrm{SH}$	
-HX	$\downarrow \mathrm{R}_{2}{ }^{\prime}$

tolazoline sympatholytic

Naphazoline

$$
\begin{gathered}
\mathrm{Br}-\mathrm{C} \equiv \mathrm{~N} \\
-\mathrm{HBr}
\end{gathered}
$$

benzimidazole

Monocyclic compounds with more than two heteroatoms

I/ Triazoles and its derivatives

1,2,3-triazole

1,2,4-triazole

1,2,3-benzotriazole

derivative

stereospecific reaction
geometry of the starting material and of the final product are identical
Huisgen
for 1,2,3-triazoles
dialkyl maleate

1,2,4-triazoles

II/ Tetrazole and its derivatives

$1 H$-tetrazole

2H-tetrazole

1,5-pentamethylenetetrazole

III/ Thiadiazole and its derivatives

Fonurit
Diamox
diuretic compound
with carboanhydrase blocking effect

IV/ Oxadiazole and its derivatives

1,2,3-oxadiazole

1,2,4-oxadiazole (azoxime)

1,2,5-oxadiazole (furazane)

1,3,4-oxadiazole

dimethyl glyoxime

symmetric diacyl hydrazine

Prenoxdiazine

Less frequent heterocyclic rings and ring systems

I/ Dioxolanes and dithiolanes

1,2-dioxolane
1,3-dioxolane

1,2-dithiolane

1,3-dithiolane

II/ Crown ethers and cryptands

 heteroatoms number of elements of the skeletone

$$
[6] \text { crown }\lfloor 18
$$

Crown ether with O atoms: cyclic polyether
Crown ether with S, P, N atoms: cryptands

Crown ethers

C. J. Pedersen discovered these cyclic polyethers with many oxygen atoms in 1967. Their curiosity is that they are able to form insoluble complex with various metal cations, e.g., $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$, depending on the inner diameter of the ring, resulting in removal of these cations by filtration. This discovery had great importance from organic chemical point of views. Large-scale preparation of crown ethers was carried out by industry. There are crown ethers with 4,5 and 6 oxygen atoms.
Application of crown ethers may take place in organic chemistry by dissolution of a crown ether in aprotic solvent, then adding potassium, or sodium salts to it, the crown ether makes complex with the cation, and precipitated. There is a highly reactive anion in the solution after filtration. E.g., potassium permanganate becomes soluble in benzene after treating it with crown ether, then this apolar solution of permanganate anion is used as strong oxidating agent. Similarly potassium cyanide, potassium fluoride, potassium nitrite, potassium iodide can be dissolved apolar solvents. Reduction by sodium borohydride can be carried out in aromatic solvents, if crown ether was added. E.g., dehydration of an O-tosylate runs for 42 hours at usual conditions, while the yield is only 9%. The same compound has dehydration in the presence of crown ether within 1 hour with yield of 70%. Many such kind of applications can be found in the literature.

Pedersen, then Jean Mary Lehn were working with such crown ethers in 1965. They prepared ethers with greater ring size \rightarrow crown ethers. The oxygen atoms are arranged in the structure in order to make noble gas configuration with the proper cations. The counter anion is attached from outside. KMnO_{4} is insoluble in benzene. However, adding some crown ether to the suspension, - e.g., [18] crown [6] - colour of benzene turns to be of violet, showing dissolution of KMnO_{4}. The crown ether can solvate K^{\oplus}, while permanganate ion is attached to this complex in form of ion pair, from in front of the ring or from behind the ring. Permanganate ion is naked, there is only electrostatic attachment of ions. Therefore, the oxidating behaviour of permanganate ion is remained. KOH can be dissolved in apolar solvents by a crown ether. Hydroxide anion is naked, its nucleophilic power is remained in S_{N} reactions. The only condition of dissolution of the reagent is that the cation must make stable complex, while the anion is naked. The similar dissolution happens in dipolar aprotic solvents. The naked anions are of much more nucleophilic, than any solvated anions. Such kind of dissolutions are called as solid-liquid transfer. Liquid-liquid transfer: see PTC reactions (phase transfer catalysis).

III/ Pyrrolizidine

pyrrolizidine
(in alkaloids)

Six-membered heterocyclic compounds
with one heteroatom and their
derivatives with condensed ring system

I/ Pyrane and its derivatives

Nomenclature

2H-pyrane α-pyrane

4H-pyrane γ-pyrane /

pyrilium salt
the benzopyrilium salts are stable compounds

Preparations

$\mathrm{NaOEt} / \mathrm{EtOH}$
anhydrous

anhydrous hydrochloric acid

aqueous hydrochloric acid
\qquad

More important derivatives

3,4-dihydro--2H-pyran

tetrahydro -pyran

$2 H$-pyran-2-one
α-pyrone

4H-pyran-4-one γ-pyrone

α-chromen
2 H -chromen (stable)

chroman

γ-chromen
4H-chromen (unstable)

2 H -chromen-2-one α-chromone coumarin

α-chromanone

γ-chromanone

$4 H$-chromen-4-one γ-chromone

It is a double vinylogous lactone Both mesomers contribute to the real structure

it can be isolated from wheat germ oil
Vitamin E it participates in
α-Tocopherol
keeping pregnancy

Coumarin - its hydroxy derivatives occur in glycoside form in nature
dicoumarol an anticoagulant (its antidote is Vitamin K)

tautomers

not existing

these differ from each other in the position of a $\mathrm{H}\left(\mathrm{H}^{\ominus}\right.$ anion) and of a double bond

(difference lays at oxo-enol taumerism in differences in mobile H^{\oplus} as well as position of a double bond)

Anthocyanines

These derivatives are compounds with conjugated double bonds (conjugated: 2H-pyran, or isolated: 4 H -pyran) (heterocyclic alkenes). The compounds are reactive ones with high energy content.

hydrolysis

Anthocyanines are glycosides \longrightarrow anthocyanidine (aglycon) + sugar component Flavinium salts: coloured materials of plants with glycoside type (flower petals, fruits, strawberry, pelargonium, red poppy, black grape, bluebonnet, chrysanthemum): these might be red, purple, violet, blue
α-Chromene derivatives are polyhydroxy compounds with 5 hydroxy groups. Its derivatives occur in the nature only, e.g., methyl ether, acetyl derivative, or with free hydroxy groups.
The glycoside structure is the remnant of molecular phylogenesis, representing its carbohydrate origine.
Cyanin (greek) - blue
The actual colour depends on pH of cells as well as on depth of layers, since coloured components do not move freely within the cells, these form layers. Blue colour of bluebonnet and red colour of red poppy comes from the same molecule.

1. pH value
2. number of hydroxy groups
3. the actual form of hydroxy group (free, methyl ether, glycoside)
4. position of glycoside group

pseudobase
$\mathrm{pH}=11$ colourless
blue (flower petals)

These differ in the number and positions of hydroxy groups, in quality and position of the sugar components.
Source of red colour can be carotenoids (red pepper), while other carotenoids are yellow.
White colour of flower petals come from the colourless air, but from not a coloured material.
There is sp^{2} conjugated system in cyanidine chloride, where the pyrilium salt is the auxochrome component.
Appearence of a sp ${ }^{3}$ carbon separates the two chromophores, resulting in no absorbance in the coloured range.

Flavonoids

Yellow colour of yellow plants (flavus - yellow) γ-chromene derivatives

Colour of tulips and other plants by springtime. There can be 4 types of hydroxy derivatives (free, methyl ether, acetoxy derivative or glycoside), similarly to the anthocyanines.

2- phenyl-4H-chromene flavene

2-phenyl-2H-chromene

flavanone

flavone

flavinium salt

flavanonol

flavonol

isoflavone

 $\xrightarrow{\text { pyridine }}$

Prof. Géza Zemplén
Technical University at Budapest : he was a flavonoid researcher
flavanol type

Vitamine P: discovered by Szent-Györgyi, Rusznyák, Bruchner It decreases permeability of capillaries, increasing their resistance.

Anthocyanines: α-chromene derivatives
Flavonoids: γ-chromene derivatives
Anhydrobases: compounds forming salts with acids without generating water (see the examples on the previous slides)
Pseudobases: some secondary carbons with OH can dissociate to hydroxy, similarly to the effect of bases \longrightarrow pseudobases

anhydrobase

compound II is an anhydrobase, since it contains one water molecule less, than compound I

fluorescein indicator

tetrahydrocannabinol psychotomimetic agent

Cannabis indica

II/ Thiapyran and its derivatives

Structure

tetrahydrothiapyrone

Preparation

III/ Pyridine and its derivatives

Structure

Preparations

1/ Isolation from coal tar

Homologues of pyridine are isolated from coal tar
Homologues of pyridine with 1 methyl groups are called as picolines
Homologues of pyridine with 2 methyl groups are called as lutidines
Homologues of pyridine with 3 methyl groups are called as collidines
Homologues of pyridine with 4 methyl groups are called as parvolines
picolines:

α

β

γ
lutidines:

collidines:

parvolines:

2/ Hantzsch synthesis

pyridine derivative stabilised, therefore its dihydro derivative is easily oxidised to aromatic compound

3/ From 1,5-dioxo compounds

4/ By isosteric exchange
see at pyran and its derivatives
5/ By Chichibabin synthesis

Physical properties

The parent compounds have high solubility in water
Their UV spectra are similar to of benzene.
There are group vibrations in their IR spectra: pyridine counts to monosubstituted benzene, in respect to the fingerprint region of $700-900 \mathrm{~cm}^{-1}$
Their NMR spectra:

Chemical properties

1/ Acid-base properties

The compounds are stable against acids (salt formation), while are somewhat labile to bases (hydrolysis), except for pyridine. Base sensitivity increases by the number of heteroatoms. Pyridine is of basic property - introduction a second N decreases basicity.

2/ Tautomerism This is function of solvent, of pH , of structure, and of functional group(s)

vinylogous lactim vinylogous lactam

$\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{NH}$
in water only; 50% ratio of it

Diazotization if the amino group is possible, proving that the equilibrium is shifted to the amino form in highly acidic conditions. The 2- or 4-diazonium derivatives can be decomposed easily, while the 3-diazonium derivative is stable.

3/ $S_{E} A r$ reactions It takes place with difficulties, and into β position only

* Sulfur trioxide absorbs the water generated in the reaction. KNO_{3} is less volatile, than $\mathrm{HNO}_{3} . \mathrm{HNO}_{3}$ is generated in the reaction mixture.
Pyridinium ion withdraw electrons from ring carbons even more.
Pyridine reacts in $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reactions with difficulties due to two reasons:
a) electron density is decreased in α - or in γ-positions especially, the least in β-position
b) Protonation of the N atom $\left(\mathrm{NH}^{+}\right)$increases electronegativity of N , thus withdrawing electrons from the ring carbons even more.

4/ $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions
α-substitution:

It takes place in α - and γ-positions mainly due to the lower electron density in these positions
NaH is deprotonating the amidine NH_{2}, resulting in H_{2}.
The reaction becomes irreversible, since H^{-}is the leaving group, and it reacts with the proton source NaH .

Regioselective α - and γ-substitution

Pyridine in nucleophilic reactions

Pyridine in electrophilic reactions

In ground state
There are lower electron densities in α - and γ-positions
In nucleophilic reactions
The ring N causes $-\mathrm{I} \alpha>-\mathrm{I} \gamma$, the β carbon does not react. The negative charge in the intermediate can appear on the N , as well.

In electrophilic reactions

The relatively highest electron density is found on the β ring carbon, since there is no positive charge on the N , and moreover, there is no positive charge in any mesomers if β-substitution takes place.

Pyridine in ground state

5/ Reactions at a lone pair of electrons

One of the nonbonding orbitals of oxygen can be coplanar (in the same
 plane) to the combining p AO-s of the ring atom. Thus, the +M effect of the oxygen is overcompensating the -I effect of the nitrogen, resulting in electron richness in α - és γ - positions of the ring. One electron is excited to the LUMO orbital. Size of delocalisation is increased.

Not at $300^{\circ} \mathrm{C}$-on, like for pyridine $\quad \triangle \mathrm{t}=200^{\circ} \mathrm{C} \longrightarrow$ the difference in reactivities is 10^{8} times

6/ Addition reactions

The Diels-Alder reaction has a very complex mechanism with pyridine, the reaction is not concerted (asynchronous) and the final product is formed by aromatic stabilization of the previous, coloured intermediate.

7/ Reduction

Reduction is the easiest, if the compound has strong electron absence.

This system can be reduced even more easily, since it has stronger electron absence \longrightarrow reduction takes place in α - or in γ-positions

It is a biochemical H -transfer agent, main ingredient of coenzymes NAD, NADH

8/ Oxidation

The stronger the electron absence, the more difficult is the oxidation.
There is no ring opening for pyridine by oxidation.
Formation of N -oxide is possible from pyridine.

9/ Polymerisation

It does not run, in the contrary of five-membered heterocycles.

There is active H at α - and γ-methyl groups for heterocycles with π-electron deficiency

$$
\mathrm{X}=\mathrm{CH}_{3}, \mathrm{O}^{\ominus}
$$

10/ Reactions of the active C-H group

More important derivatives

isonicotinic acid

chloropyramine (Synopen) an antihistaminic drug
isonicotinic acid hydrazide, INH
first drug of tuberculosis, 1952

pyridoxine - $\mathrm{CH}_{2} \mathrm{OH}$
(pyridoxol vitamin B_{6})
pyridoxal $-\mathrm{C}=\mathrm{O}_{\mathrm{H}}^{\mathrm{O}}$
their phosphate ester is used in coenzymes of transaminating and of redoxy reactions

Indolizine, indolizidine

Quinolizine, quinolizidine

The benzocondensed derivatives of pyridine

quinoline benzo[b]pyridine

isoquinoline benzo[c]pyridine

acridine benzo[b]quinoline

phenanthridine benzo[c]quinoline

9aH-quinolizine dehydroquinolizinium salt

Quinoline

Preparations

1/ By Skraup synthesis

Michael-type addition

\longrightarrow

isolation of quinoline may take place from coal tar

2/ By Döbner-Müller process

Chemical properties

These are similar to of pyridine:
S_{E} reaction takes place at the carbocycle, in position 5, or 8
S_{N} reaction takes place at the heterocycle, in position 2, or 4

bromination
nitration
sulfonation $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$

1/ Oxidation

oxidation: the carbocycle is oxidized in basic medium,

reduction: depends on catalyst and solvent

3/ Electrophilic reactions

4/ Nucleophilic reactions

More important derivatives

quinaldine

Atophen (aciphenoquinoline)
drug against gout and joint diseases

drugs and dyes with acridine skeletone

Plasmochin (Chloroquin): against malaria. There were many patients infected with malaria during the II. World War in Japan, due to the tropical climate. There was international cooperation for drugs against malaria: 100 thousand compounds were tested during 3 years, and 11 compounds became drugs.

$\mathrm{H} \longrightarrow \mathrm{Al}, \mathrm{Fe}$ makes insoluble complexes with heavy metals (see analytical chemistry)
alkaloids with quinoline skeletone (see alkaloids)

Phenanthridine

drugs with trypanocidal activity

Isoquinoline

Origin of it is from coal tar.

Preparations

1/ Bischler-Napieralski synthesis

2/ By Pictet-Spengler synthesis

Position 6 is activated by the methoxy groups, similarly to the biosynthesis.

Chemical properties

The chemical properties are similar to of pyridine
S_{E} the carbocycle reacts mainly - bromination, nitration, sulfonation S_{N} the heterocycle reacts in position $\mathrm{C}-1$

1/ By oxidation
The carbons of heterocycle have low electron density, therefore oxidation of the carbocycle takes place in neutral / basic medium. Protonation of the N helps improving acidity of the heterocycle, therefore phthalic acid is prepared in acidic medium.

2/ By reduction

3/ By electrophilic reactions

4/ By nucleophilic reactions

More important derivatives

By Zoltán Földi CHINOIN industrial synthesis

muscle relaxant drug

Six-membered heterocyclic compounds with two or more heteroatoms and their derivatives with condensed ring system

Compounds with two nitrogens

I/ Azines and its derivatives

Similar heteroaromatic compounds with oxygens or sulfur atoms are not important, their partial or fullly saturated derivatives only. Introduction of the second nitrogen makes the derivative with even more π-electron deficient.

Pyridazine and its derivatives

Structure

cinnoline

phthalazine

benzo[c]cinnoline

Preparations

Schiff's base structural unit

R: alkyl, aryl
R': alkyl, aryl, H
R": alkyl, aryl

hydrazone

Schiff's base (N-substituted imine)

Amide structural unit

Hydrazide structural unit

R: alkyl, aryl
R': alkyl, aryl,
X : halogen, $\stackrel{\mathrm{O}}{\mathrm{O}}-\mathrm{R}$

hydrazide

Mechanism

phthalic anhydride
phthalic acid hydrazide

phthalic acid hydrazide

There are many drugs with phthalazine ring system:

Aprezolin renal dilatator

Nepresor
decreasing blood pressure

Basic strength in aqueous solution

pK_{a} values for the conjugated acids of the bases

strong repulsion	medium repulsion	
basicity	pyridazine $>$	pyrimidine $\gg 0.7$
pK_{a} values	2.3	pyrazine

strong repulsion

medium repulsion

weak repulsion

Pyrimidine and its derivatives

Preparations

2.

3.

barbituric acid derivative
pyrimidine
4.

5.

6.

7.

$+$

$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$

Basethyrin
hyperthyreotic compound

Barbituric acid derivatives
The barbiturate name is improper, can be applied for salts only. Uses are against insomnia (usually not for surgical uses).
Barbituric acid itself is without effects.

| long
 medium
 short
 ultrashort |
| :--- | | The efficient |
| :--- |
| period depends |
| on the excretion |

\mathbf{R}^{1}
R^{2}
R^{3}

Amobarbital

$$
\mathrm{C}_{2} \mathrm{H}_{5}
$$

H

Dorlotyn (narcotic, with medium length)
Butobarbital
$\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
H
Etoval (narcotic, long)
Cyclobarbital $\quad \mathrm{C}_{2} \mathrm{H}_{5}$

H

Hypnoval (narcotic, medium)

Hexobarbital CH_{3}

CH_{3}
Novopan (parapulmonar narcotic agent)
Phenobarbital $\mathrm{C}_{2} \mathrm{H}_{5}$

H
Sevenal (narcotic, long, antiepileptic agent)

Inactin $\mathrm{C}_{2} \mathrm{H}_{5}$

H

Venobarbital (parapulmonar narcotic agent)

(
(II)

Chemical properties

active H

1. Pyrimidine is a weak base, $\mathrm{pKa}=1.3$

It is able to participate in nucleophilic reactions:
$\mathrm{OH} \rightarrow \mathrm{Cl} ; \mathrm{Cl} \rightarrow \mathrm{H}$
2. Electrophilic reactions do not run.
3. Centre No 5 is the most reactive, it is an active methylene group in barbituric acid. But it is impossible to run alkylation or arylation in centre No 5 of barbituric acid after ring closure, since the alkyl or aryl group attacks the heteroatoms only.

4. Resists oxidation: the substituents are oxidised only

5. There is tautomerism at hydroxy- and at aminoderivatives, e.g.,

The tautomeric equilibrium depends on temperature and solvent strongly. Rate of N -alkylation is higher, than rate of Oalkylation.
Usually more than one tautomer are present in crystalline form, the actual main tautomer depends on the isolation conditions.

Benzocondensed derivatives of pyrimidine

More important derivatives

uracil
RNA

cytosine RNA DNA

thymine
DNA
pyrimidine bases

7H-purine derivatives

	R^{1}	R^{2}	R^{3}	
xanthine H	H	H		
theophylline	CH_{3}	CH_{3}	H	in Chinese tea
theobromine	H	CH_{3}	CH_{3}	in cocoa beans
caffeine	CH_{3}	CH_{3}	CH_{3}	in coffee beans

Each compound can be found in all of these plants, but the main component is characteristic.
They have diuretic effect.

Synthesis of uric acid and of purine

These are compounds isolated in the XVIII. Century (Scheele, 1776). The following synthetic method for purine was introduced by E. Fischer (1898):

Another synthesis of a purine derivative is Traube's method (1900):

Compounds with purine ring system

Synthesis of theofilline (Traube synthesis)

theofilline

Synthesis of theobromine (Traube synthesis)

(7H)-9H-imidazo[4,5-d]pirimidin (unusual, biogenetic numbering)

Purine

More important derivatives:

- guanine
- adenine
- xanthine
- theofilline
- theobromine
- caffeine

Vitamin B_{1} Thiamine, aneurine

Pteridine and its derivatives

Folic acid is an important vitamin: its N -formyl derivative builts the C_{1} unit in biosyntheses

benzo[g]pteridine

alloxazine

isoalloxazine

Vitamin B_{2}

ribitol
take place by prosthetic groups of enzymes (flavoproteide enzymes, e.g., FAD)

Compounds with pyrimido-pyrimidine ring system

anhydrous toluene
boiling pyrimido-pyrimidine skeletone

regioisomers

Pyrazine and its derivatives

Benzocondensed derivatives of pyrazine

o-phenylene diamine dimethylglyoxal 2,3-dimethylquinoxaline

phenanthrene quinone

dibenzophenazine

Compounds with two different heteroatoms

I/ Oxazine and its derivatives

$2 H-1,2$-oxazine $4 H$-1,2-oxazine $6 H-1,2$-oxazine

2H-1,3-oxazine
$4 H$-1,3-oxazine $6 H-1,3$-oxazine

Further derivatives: benzocondensed derivatives partially saturated derivatives
$2 H$-1,4-oxazine $4 H$-1,4-oxazine

II/ Thiazine and its derivatives

2H-1,2-thiazine

Cephalosporin C antibiotic drug
Cephalosporium fungi species

Antibiotics: microorganisms (fungi) are producing against other microorganisms (bacteria)

Ahistan (antihistaminic agent)
prepared at first by O. Clauder
Frenolon (original Hungarian drug)
neuroleptic drug

There are phenothiazine dyes (methylen blue), and other benzocondensed derivatives.

Compounds with three heteroatoms

I/ Triazines

important raw material of plastic industry

II/ Thiadiazines

hydrochlorothiazide diuretic agent

2H-1,2,4-benzo[e]thiadiazine

Compounds with four heteroatoms

I/ Tetrazines

sym. tetrazine

Heterocyclic compounds with seven- and eight-membered rings and their derivatives

Heterocyclic compounds with sevenmembered rings

Nomenclature, some important derivatives

oxepane

oxepine

thiepane

thiepine

$1 H$-azepine

1,2-dioxepane

2H-azepine

$$
\begin{array}{ll}
\text { 1,2-dithiepane } & \mathrm{Y}=\mathrm{O} \\
\mathrm{Y}=\mathrm{S} & 1,2 \text {-oxazepane } \\
& \text { 1,thiazepane }
\end{array}
$$

3H-azepine

4H-azepine

Benzodiazepine derivatives

Sedatohypnotica

Grandaxin: anxiolitics free from sedative side-effects (e.g., it can be administered before driving) (J. Kőrösi at GYKI, EGYT, 1966. Hungarian patent)

Preparation

$\|^{1 / \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \cdot \mathrm{HX}} \begin{aligned} & 2 / \mathrm{HO}^{\ominus}\end{aligned}$

1,4-oxazepine derivative

1,4-thiazepine derivative

$+$

diltiazem
antihypertensive agent
for treatment of heart disease and antiarrhythmics

Heterocyclic compounds with eightmembered rings

Azocane / Diazocane derivatives

Thiocane derivatives

