A 21. század iskolája
Tartalom

Bevezető ... 7

1. **Épület** ... 9
1.1 A 21. század iskolájának berendezése (Molnár Gyöngyvér) ... 9
1.1.1 A falak és a mennyezet színei ... 10
1.1.2 Fény, megvilágítás .. 11
1.1.3 Az ablak elsötétíthetősége ... 12
1.1.4 Bútorzat .. 12
1.2 Oktatási helyiségek kialakítása (Németh Edit) ... 15
1.2.1 Általános oktatási egység .. 16
1.2.2 Az ülés ergonómiaja ... 17
1.2.3 Helyszükséglet .. 19
1.2.4 Számítógépes oktatási egység ... 21
1.2.5 Berendezések, eszközök .. 22
1.2.6 Egy képernyős munkahely beállítása .. 24
1.2.7 A képernyős munkahelyek megvilágításának speciális kérdései .. 26
1.3 A fizikai környezet kialakításának ergonómiai szempontjai (Németh Edit) 28
1.3.1 Fizikai környezet tényezői .. 29
Felhasznált irodalom ... 40

2. **Informatikai infrastruktúra** .. 42
2.1 Multimédia .. 42
2.1.1 Interaktív tábla használatának oktatási technikai kritériumai (Makó Ferenc) 42
2.1.2 Szavazórendszerek (Molnár Gyöngyvér) ... 47
2.1.3 Oktatási célú projektorok (Makó Ferenc) ... 51
2.1.4 Érintőképernyős számítógépek (Molnár Gyöngyvér) ... 57
2.2 Tanár-diák-szülő kapcsolat támogatása: az átlátható, kliens központú iskola (Hutai László) 62
2.2.1 Digitális napló .. 62
2.2.2 Jelenlét és közlekedés számon tartása az iskolaépületben ... 73
2.2.3 Telefon (számla)- kezelés .. 79
2.3 Pályázati lehetőségek (Simonics István) ... 83
2.3.1 Miért pályázzunk? ... 83
2.3.2 Információk, pályázati felhívások ... 83
2.3.3 Pályázatok előkészítése és írása .. 86
2.3.4 Pályázatok megvalósítása és a monitoring szerepe 89
2.3.5 Jelentések, beszámolók készítése .. 90
2.4 CRM az iskolában (Kemény Szilvia, Kovács László) 91
2.4.1 A kommunikáció támogatása .. 92
2.4.2 Üzleti intelligencia megoldások .. 94
2.4.3 Veszedelmes viszonyok ... 96
2.4.4 Életút követés .. 97
2.4.5 Összegzés .. 98

Felhasznált irodalom ..99

3. Pedagógia .. 101
3.1 Tartalom .. 101
3.1.1 Mi a digitális tananyag? (Kárpáti Andrea) 101
3.1.2 Műfajok (Kárpáti Andrea) .. 103
3.1.3 Tananyag-értékelési szempontok (Kárpáti Andrea) 111
3.1.4 Tananyag-adatbázisok (Kárpáti Andrea és Timár Sára) 112
3.1.5 A tartalom tervezésének és kiviteletésének pedagógiai és pszichológiai szempontjai (Simonics István) 119
3.2 Módszerek .. 130
3.2.1 Csoportmódszerek (Kárpáti Andrea, Molnár Gyöngyvér, Molnár Pál) .. 130
3.2.2 Online kommunikáció (Szabó Vince) 152
3.2.3 Az egyéni tanulás támogatása (Kárpáti Andrea) 157
3.2.4 Előadói technikák (Tóth Péter, Cséfalvay Miklós, Pethő Balázs, Makó Ferenc) .. 170
3.2.5 Webes közösség (Kárpáti Andrea) .. 192
3.3 Értékek és értékelés .. 200
3.3.1 Értékelés-számítógép alapú tesztelés, online tesztkörnyezet, adaptív tesztelés (Molnár Gyöngyvér) 200
3.3.2 A jövő iskolájának pszichés komfortja (Suplicz Sándor) 212

Felhasznált irodalom ..221
2006 szeptemberében a Microsoft Corporation és a Philadelphiai Önkormányzat megnyitotta a „Jövő Iskoláját” (School of the Future). Az iskola egy hatalmas beruházás és évekig tartó tervezés eredménye, amelyben tanárok, diákok és kutatók, valamint kormányzati és üzleti képviselők vettek részt.

A képeket és leírásokat böngészve (http://www.microsoft.com/education/schooloffuture.mspx) sokan elérhetetlennek gondolják...

Épp ezért írtuk e könyvet.

túrát. A korszerű pedagógiai módszerek fejezet ismerteti, milyen lehetőségeink vannak a frontális metóduson túl, és konkrét gyakorlati útmutatót ad az IKT eszközök használatához.

Ajánljuk e könyvet minden innovatív igazgatónak, függetlenül attól, hogy csak egy kicsi vagy pedig hatalmas lépést engednek meg a körülmények a fejlődés irányába.

Jókai István
Nemzeti Tankönyvkiadó Zrt.

Drajkó László
Microsoft Magyarország
A 21. század iskolája
Szerzők:

Dr. Cséfalvay Miklós, BMF, Tanárképző és Mérnökpedagógiai Központ

Hutai László, Karinthy Frigyes Gimnázium - Budapest

Dr. Kárpáti Andrea, ELTE TTK Multimédiapedagógiai és Oktatástechnológiai Központ

Kemény Szilvia, Mátrix CRM Kft.

Kovács László, Mátrix CRM Kft.

Dr. Makó Ferenc, BMF, Tanárképző és Mérnökpedagógiai Központ

Dr. Molnár Gyöngyvér, Szegedi Tudományegyetem, Neveléstudományi Intézet, MTA-SZTE Képességkutató Csoport, Oktatásméleti Kutatócsoport

Molnár Pál, Károli Gáspár Református Egyetem

Németh Edit, BME Gazdaság- és Társadalomtudományi Kar, Alkalmazott Pedagógia és Pszichológia Intézet, Ergonómia és Pszichológia Tanszék

Pethő Balázs, ELTE TTK Multimédiapedagógiai és Oktatástechnológiai Központ

Dr. Simonics István, BMF, Tanárképző és Mérnökpedagógiai Központ

Suplicz Sándor, BMF, Tanárképző és Mérnökpedagógiai Központ

Szabó Vince, egyetemi hallgató, Budapesti Műszaki Egyetem

Dr. Tóth Péter, BMF, Tanárképző és Mérnökpedagógiai Központ

Tímár Sára egyetemi hallgató, Budapesti Corvinus Egyetem, Társadalomtudományi Kar, közgazdász-tanár szak
A 21. század iskolája

A könyv a Microsoft Magyarország felkérésére és finanszírozásával jött létre, a Nemzeti Tankönyvkiadó támogatásával.
1.1 A 21. század iskolájának berendezése

Molnár Gyöngyvér

Egy kicsit dőljön hátra és képzelje el az Ön szerint ideális 21. századi iskolát és osztálytermét. A viziók legtöbbjében előkelő helyet foglalnak el a legmodernebb informatikai eszközök, érintőképernyők, háromdimenziós vetítések, futurisztikus lehetőségek, de vajon gondoltak-e a bútorok, a falak és a különböző berendezési tárgyak színeinek meghatározó szerepére, a színek tanulást segítő hatásának fontosságára? A bútorok mozgathatóságára, a terem gyors átalakíthatóságára, mobilitására, az ergonómiai szempontok figyelembe vételére?

Egy ideális tanulási környezet tervezése során mindezen szempontok figyelembe vétele nélkülözhetetlen. Felmerül rögtön a kérdés, akkor mi tesz vajon egy iskolát, egy osztálytermet ideális tanulási környezetté, ahova mind a tanárok, mind a diákok szívesen lépnek be.

Ebben a fejezetben áttekintjük azokat a faktorokat, amelyek nem az iskola és az osztályterem informatikai, multimédiás berendezésével kapcsolatosak, de egy ideális tanulási környezet megvalósításához nélkülözhetetlenek és jelentősen befolyásolják a tanulási és tanítási lehetőségeket. A tanteremben folyó tanulás és tanítás hatékonyságát továbbra is legnagyobb részt a tanár határozza meg, azonban a tanulás környezeti feltételei jelentős mértékben lecsökkenthetik, illetve kitágithatják a tanár lehetőségeit.

1.1.1 A falak és a mennyezet színei

A színek emberre gyakorolt hatásról számos tanulmány született már, mégis kevesen foglalkoznak a színek iskolai, osztálytermi kiválasztásának lehetőségeivel, iskolai tanulást segítő hatásuk mivoltával.

A szakirodalom alapján, ha igazán motiváló tanulási környezetet szeretnénk ki-alakítani, akkor a tanterem négy fala közül az egyiket – amelyiket a diákok a legtöbbet nézik – más színűre, élénkebbre, sötétebb tónusúra, vagy komplementer-színűre festjük, mint a többi falat (MAHNKE, 1996). Ennek nemcsak esztétikailag van jelentősége, hanem a diákok szemére is jó hatással van (MAHNKE, 1996). Néhány példát szemléltet az 1. ábra.

1. ábra: Egy-egy példa a különböző színek alkalmazására
A 21. század iskolája

1.1.2 Fény, megvilágítás

A színek tekintetében más a helyzet, ha kilépünk a tanteremből és a folyosókon alkalmazandó színek körét tekintjük át. A folyosókon sok a mozgás, a diákoknak nem kell relatív több időt egy helyben tölteni, ezért a folyosók lehetnek színessebbek, mozgalmassabbak, vibrálóbbak, nyugodtan alkalmazhatjuk a sötétebb, élénkkebb, kontrasztosabb színeket, színáramlatokat is. Például világos narancs, vagy világos zöld falakat kék ajtókkal. Ha elég tágasak az előterek és a folyosók, ahol esetleg a diákok különböző beszélgetésekre is össze tudnak jönni, és a tantermekbe órák után és között nem mindig tudnak bejutni, akkor érdemes egy-egy táblát az osztálytermeken kívül is elhelyezni, ahol meg tudják beszélni a problémás tananyagrészeket.

A legújabb kutatási eredmények egybehangzóak, valamint (pl. MAHNKE, 1996) egyértelműen rávilágítanak arra, hogy az intézményekben energiatakarékosági okokból leggyakrabban használt fénycsöves világítás nemhogy a tanulást nem segíti, de még az egészségre is káros hatással van. A fénycsövek helyett olyan fényforrást javasolnának, amely fehérebb fényt ad, vagy legjobb esetben teljes spektrumú fényt bocsát ki, ami közelebb áll a természetes napsütéshez. Ez olvasás közben kevésbé károsíthat, erőltető, pontosabb színlátást eredményezne. Mindemellett jobb hatással lenne a szervezetre, az iskolában dolgozó és tanulók kedvére is.

A jövőben a szintén energiatakarékos, de teljes spektrumú fehér fényt kibocsátó LED (light-emitting diode) fény helyettesíthetné a fénycsöveket. A fényforrások elhelyezésénél törekedni kell a minél jobb lefedésre, azaz legyen elől, középen, hátul, oldalt, hogy minél kevesebb árnyék keletkezzen, és igény szerint alakítható legyen a tanterem megvilágítása, ezáltal kellemesebb légkört

2. ábra: Egy „előtte - utána” példa a színek és a megvilágítás fontosságára
(forrás: http://lightingdesignlab.com/locations/epri_uw.html)
teremtve az oktatás számára. A terem megvilágításának és színeinek összhangban történő megtervezése megfelelő alapot nyújt egy ideális tanulási környezet kialakításához. A 2. ábra ugyanazon osztályterem átalakítás előtti és átalakítás utáni állapotát mutatja.

1.1.3 Az ablak elsötétethetősége

A közérzet szempontjából lényeges elemnek tartják a kutatások azt, hogy legyen egy osztályterem falán ablak, ami lehetőleg szellőztetésre is alkalmas legyen, azaz nyitható legyen. Azonban a megfelelő megvilágítás kiválasztása és a minél több természetes fény biztosítása mellett a technikai eszközök hatékonyabb használatához – pl.: projektor képének látszásához, a monitoron és a tévéképernyőn visszatükröződő fény leáramlásához –, több esetben szükséges az ablakok elsötétítése. Az ablakok belül lévő sötétítők védjék a direkt fény és csillagás ellen, míg az ablakon kívül lévő eszközök az ablakok sarainál is minimalizálják a beszűrődő fényt. Érdemes könnyen kezelhető rendszer mellett dönteni.

1.1.4 Bútorzat

Egy tökéletes osztályterem nem nélkülözheti a jól megtervezett, sokféle oktatási módszer – frontális, kis- és nagycsoportos munka, pármunka, egyéni tanulás stb. – alkalmazására megfelelő, ezért mobilis, könnyen mozdítható asztalokat és székeket. A bútorok (székek és asztalok) jobban igazodnak a diákok igényeihez, ha azok magassága állítható, illetve ergonómiai megfelelőek.

A változatosság növelése érdekében érdemes megkönnyíteni az asztalokat, hanem görgőkön guruló, de lefékezhető, trapéz alakú asztalokat és görgő székeket. A 3. ábra egy trapéz alakú asztalokkal felszerelt osztályterem sematikus ábráját, a 4. ábra pedig konkrét, gyakorlatban történő néhány elrendezési módját mutatja a teljesség igénye nélkül. A kisiskolások munkájának megkönnyítése érdekében hasznos, ha olyan asztalokat vásárolunk, amelyek 19 fokban dönhetőek.

Az asztalok és székeken kívül szükség van könyvpolcokra, szekrényre, ami alkalmas a különöző számítástechnikai eszközök (l. később) tárolására és szükség esetén töltésére. A könyvek regisztráció során figyelembe kellett venni, hogy: (1) biztosítsuk a gépek megfelelő szellőzését, (2) a számítógépek töltését, illetve azt, hogy (3) egy átlagos méretű ember elérje bármely gépet (MOLNÁR, 2007a).
3. ábra: A trapéz alakú görgős asztalok néhány elrendezési módba
(Forrás: MOLNÁR, 2007a)
ÉPÜLET

4. ábra: A trapéz alakú görgős asztalok és székek néhány elrendezési módszere

Ebben a fejezetben igyekszünk esetleges inputot adni a leendő, a 21. század követelményeinek és a legújabb kutatási eredményeknek is megfelelő osztálytermek kialakításához, átalakításához. Az átalakítás során a kicsit hagyományosabb lakberendezési szempontok mellett, előtt érdemes elvégezni olyan átalakítási munkákat (pl.: villanyszerelés), amelyekre ebben a fejezetben nem térünk ki, de a tanterem multimédiás eszközökkel történő felszerelése esetén nélkülözhetetlenek (részletesebben l. pl. MOLNÁR, 2007a, b). Ezeket a könyv más fejezetéiben részletezzük.
1.2 Oktatási helyiségek kialakítása

„Designing for human use” – vagyis az emberi használatra való tervezés, az ergonómia lényegének legtömörebb megfogalmazása.

Általános gyakorlat és sajnos szomorú tapasztalat, hogy az ergonómiai szemléletet nem alkalmazzák az épületek, terek, eszközökök, munkatevékenységek tervezése, kialakítása során, és már csak a balesetek, egészségkárosodások során derül fény az ergonómiai hiányosságokra. Ezekben az esetekben rendszerint csak az okok mélyebb értelmezése során derül ki, hogy a tervezők milyen alapvető ergonómiai követelményeket nem vettek figyelembe. Az ilyenkor szükséges utólagos korrekció rendszerint sokba kerül és csak kompromisszumok árán valósítható meg. Ezért a követendő és jó megoldás az ergonómiai szemlélet megjelenése már a tervezés korai fázisában, valamint a fejlesztés és a megvalósítás során. Az ergonómiai szemléletnek érvényesülnie kell az összes objektum tervezése közben is, mellyel a felhasználó, az ember kölcsönhatásba kerül, legyen az a munkakörnyezetben, a használati eszközökön, a bútorokon át a szoftverig bármi.

Annak érdekében, hogy biztonságos, hatékony és kényelmes legyen a tevékenység, a tervezés és az emberi tevékenység végrehajtásához szükséges eszközök kiválasztása során különböző ergonómiai feladatokat, illesztéseket végzünk. Mindehhez ismernünk kell a termékhasználat körülményeit, feltételeit, valamint a felhasználó adottságait, képességeit. Egy oktatási intézmény kialakításánál hatalmas különbségek vannak az általános és speciális tantermekben folyó munka és a használati szokások között, valamint az egyes korcsoportok testének és részének mérete, alakja, valamint mozgásuk és erőkifejtésük jellemzői között. Így a tanteremben folyó munka jellegének megfelelően is differenciálhatjuk az egyes oktatási helyiségeket, melyekről az alfejezetekben lesz szó, valamint nem szabad megfeleldeknünk az egyes oktatási helyiségekben megjelenő felhasználók antropometriai jellemzőinek különbözőségéről sem.

Az emberi tulajdonságok, így az antropometriai jellemzők figyelembe vételét leginkább az emberi különbözőség, a kisebb-nagyobb eltérések nehezeitik meg. Akár egyetlen ilyen jellemző, például a testmagasság, egyedre jellemző értéke az élet során folyamatosan, különböző mértékben változik, és a teljes populáció tekintetében meghatározható értékek között mozog. Például az életkor előre haladával a gyerekek magassága gyorsan változik. A növekedés sebessége az első 4-5 évben a legnagyobb, majd a kamaszkorban egy ugrás figyelhető meg. Ez a hirtelen fejlődés a lányoknál előbb (12 éves kor környékén), míg a fiúknál
később (13-14 éves kor környékén) figyelhető meg. Ennek következtében a 12 éves lányok átlagosan magasabbak, mint a velük azonos korú fiúk. Az elmúlt századokról, főleg az utóbbi száz évéről elmondható, hogy a fejlett világban nőttek a testmagasságok. Különösen a gyerekek fejlődése gyorsult fel. Ez a jelenség az úgynevezett akceleráció.

12.1 Általános oktatási egység

Egy oktatási teremnek a frontális oktatástól kezdve, a csoportfoglalkozásokon át a számítógépes munkáig mindenféle oktatási tevékenységet ki kell szolgálnia, arról nem is beszélve, hogy állva, padban ülve, vagy akár a földön ülve is folyhat az oktatás. Mindennek megfelelően az általános oktatási helyiségek kialakításával a teremben folyó munka jellegének megfelelő bútorzatot kell biztosítani, és a különböző elrendezésekenél a megfelelő nagyságú közlekedési útvonalak biztosítása szükséges.

A bútorzat kiválasztása során, mint már említettünk, az elsődleges szempont, hogy a felhasználói kör testméreteinek megfelelők legyenek a székek-asztalok, de ezen felül figyelembe veendő szempontok még, hogy az élek le legyenek kerített, valamint hogy ne legyenek kiállított részek (például az asztalok egymáshoz rögzítését biztosító elemek), mert balesetveszélyes lehet. Fontos, hogy a használaton kívül lévő székek, asztalok, írólapok egymásra rakásolhatók és könnyen mozgathatók legyenek, hogy minél kisebb helyet foglaljanak el a tanteremben. A munkaszékek kiválasztása során mérlegelni kell, hogy érdemes-e görgős munkaszéket biztosítani a diákoknak. A görgős munkaszék pozitív tulajdonsága, hogy ezzel is segítjük a diákok mobilitását, gyors helyváltoztatásért, de negatívum lehet, hogy elvonja a diákok figyelmét az örökos mozgás; továbbá a használaton kívüli székek nem rakásolhatóak, így a használaton kívüli munkaszékek nagy helyet foglalnak el, arról nem is beszélve, hogy a nem megfelelő használat következtében gyorsan rongálódnak, elromlanak.

Az oktatási termek kialakításánál a minél mobilabb, rugalmasabb elrendezés érdekében a kabátokat, táskákat a fal mellett elhelyezett kabát- és táskatartó szekrénybe érdemes elhelyezni, ezzel sem akadályozva a későbbiekben a berendezések mozgathatóságát. A különböző elrendezéseket burkolat-
váltással is lehet támogatni, így például az állandóan szabadon hagyni kötelekedséi útvonalakat más színbeli lehet jelölni, vagy például a kisiskolások számára a tanterem egyik sarkába szőnyeget lehet letenni, ahol akár a szőnyegen ülve lehet tartani a foglalkozást.

1.2.2 Az ülés ergonómiaja

Egy oktatási intézmény bútorkiválasztása során fokozottan oda kell figyelnünk a fejlődésben lévő szervezetet, a helyes testtartást legjobban támogató munkaszék kiválasztására. A helyes ülést támogató munkaszék kiválasztásának kritériumaira mindenki kíváncsi, de a testméret különbözőségeknek, a munkavégzési formák szélés körüken köszönhetően nem lehet receptet adni.

Akár álló, akár ülő munka közben tartósan rossz izületi helyzetek, egyoldalú izomfeszülések és terhelések hatására az izomegyensúly felborulhat, ami deformációkkal, mozgásbeszűküléssel és fájdalommal jár. Ezért a munkavégzésnek, oktatásnak, az ergonomiai kialakításnak biztosítani kell az apróbb, finom, természetes mozgásokat. Így például az általános iskolában a gyerekek fegyelmezésével, „ne izegj-mozogj annyit” nagyobb kárt okozhatunk, mint gondoljuk, mivel a gyereket túlzottan merev, tespedt testtartásra késztetjük. (Károly K., Hércégfi K., 2004.)

Örök vita van a szék háttámlájával kapcsolatban, hogy a háttámlás székek közvetkezetében megtámasztjuk a hátunkat, és ez nem igényel egyensúlyozást a gerinc izmaitól, ami kezdete lehet az izomegyensúly felborulásnak. Így a háttám- la akkor van megfelelően kialakítva, ha a derék-hát szakaszt támasztja meg, tehát nem is háttámláról, hanem deréktsasztól kell beszélünk. Általában az alacsony támlás székekben találhatunk megfelelő székeket, amely a derekt támasztja meg, de a magas háttámla nem a deréknál támaszt meg, hanem a lapockánál, és így a gerinc normális kettős „S” alakjának biztosítása helyett púposításra kény szeríthet.

Ha az álló testtartást vesszük természetesnek, és ebben a helyzetben az ágyéktájai csigolyák terhelései 100%-nak tekintjük, akkor fékvő, ellazult testhelyzetben a gerinc terhelése 28%-osnak tekinthető. Ülő testhelyzetben a gerinc terhelése azonban sokkal nagyobb, mint álló testhelyzetben. A legszabályosabban való ülés esetén is 140%-nak tekinthető a gerinc terhelése, és görnyedt ülés esetén akár 200% terhelésnek is kitehetjük gerincünket.

6.ábra: Az ágyéktájai csigolyák terhelése álló, szabályos ülés és görnyedt ülés testhelyzetben.
Néhány példa, hogyan lehet tudatosítani a diákokban, hogy miként kell ülniük és mire kell odafigyelniük egy tanórán a megfelelő ülés és gerincherhelés, valamint az egészségkárosító hatás elkerülése érdekében.

Egészségkárósító hatású lehet a helytelen ülő testhelyzet, mivel az álló vagy fekvő testhelyzethez képest a hasi szerveink osszennyomódhatnak, amely emésztesi problémákat, székrekedést okozhat. A szervezet nem megfelelő vérellátása (oxigén-, és tápanyagellátás) közvetlen következménye a fáradás, koncentrációzavar, fejfájás, szédülés is lehet.

További egészségkárosító hatása lehet a nem megfelelő ülőlap kialakításnak, mivel ha az ülőlap magassága nem illeszkedik a felhasználó antropometriai méreteihez és például lelóg a diák lába (nem ér le a földre), az ülőlap pereme elnyomhatja a combban futó ereket, amely zsibbadáshoz és hosszú távon visszérgyulladáshoz vezethet. Így rendkívül fontos, hogy a lábfej kellően meg legyen támasztva, ha nem ér le kényelmesen a láb, akkor a lábfej megtámasztását lábtámasszal kell biztosítanunk. Az iskolákban mindez általános probléma szokott lenni, és ilyenkor következik be, hogy a gyerekek kalimpálnak a lábaikkal, amely nemcsak egészségkárosító, de még figyelemelterelő hatású is, azonban mindez megfelelő lábtámasszal megelőzhető.

7.ábra: Példa a helyes és helytelen ülés szemléltetésére
1.2.3 Helyszükséglet

A különböző elrendezések megvalósítása előtt végig kell gondolnunk az egyes elrendezések helyszükségletét, az éppen nem használt bútorok tárolásának lehetőségeit. Például egy kényelmes 4 fős csoportmunkát egy körülbelől 100 cm×100 cm négyzet alakú, vagy egy 50-60 cm sugarú kör alakú asztal körül lehet végezni. (Egyes kutatások szerint az asztal alakja is nagy mértékben befolyásolja az asztal mellett folyó munkát, így a lekerekített formák nagyfokú kreativitást segítenek elő, míg a szögletes formák a „szögletes” gondolkodást támogatják.) A kényelmes üléshez, és a szék mögötti könnyű és kényelmes közlekedéshez az asztalok körül további körülbelől 60-70 cm hely biztosítása szükséges. Mindez 8 fős csoportmunka során négyzet alakú asztal esetében körülbelől 140×140 cm-es asztalnál, míg kör alakú asztal esetén körülbelől 65 cm-es sugarú kör alakú asztalnál valósulhat meg. Az egymás mellett ülő emberek között, a személyes terülek biztosítása érdekében, minimum 23 cm távolságot kell biztosítani. Ha egy tanórán huzamosabb ideig például az egyik irányba vetítünk valamit, akkor a csoportos elrendezés megszüntetése indokolt, mivel ellenkező esetben a gerincünket és vázizmunkat egyoldalú megterhelésnek tennénk ki.

Ha hagyományos frontális oktatást tartunk iskolapados elrendezéssel, és nem akarunk a padok között eljárást biztosítani a tanulók, illetve az oktató számára, akkor 70 centiméter távolságot kell hagyni a padsorok között. Az utolsó sorban ezt a távolságot nagyobb ráhagyással kell kialakítani, mivel a sorok közötti közlekedés esetén a felsőtestünk már nem tud átnyúlni a másik sor fölé. Az utolsó padsornál a falvédelemre is gondolni kell a szék háttámlájának magasságában, a székek ki-be mozgatása miatt.
Joska a padsorok között eljárást is szeretnénk biztosítani, úgy hogy közbe ne zavarja meg a tanulótársát, akkor ahhoz legalább 90 centiméteres távolságot kell tartanunk a padsorok között, természetesen az utolsó sorban plusz 10 centiméteres ráhagyással.

![10. ábra: Oszlopok közötti szükséges közlekedési távolság](image)

Ha a tanteremben az asztalok alapvetően oszlopokba vannak rendezve, akkor az oszlopok közötti közlekedési útvonalnak minimum 110 centiméter szélesnek kell lennie, mivel a tanulók mindkét oldalról főként ki- és becsengetéskor ezt az útvonalat használják a közlekedésre. Ha az asztalok úgy vannak kialakítva, hogy a táskatartó az asztal oldalán helyezkedik el, akkor ezt a közlekedési útvonalat további 20 centiméterrel bővíteni kell.

Ha a tanteremben a bejárat mellett oldalt vannak elhelyezve a kabát- és táskatartók, akkor ez előtt kell biztosítani a 130 cm széles közlekedési útvonalat, így például egy táskát ki- vagy bepakoló diákok mögött biztosított a zavartalan közlekedés.

A különböző információkat főként látás útján dolgozzuk fel. Ezért egy belső tér kialakításánál ügyelnünk kell arra, hogy az iskolások számára fontos információk a tanulók látómezejébe essenek, és hogy a látómező akadálymentes legyen. Mivel a tanteremben egy hagyományos tanórán általában soros elrendezés valósul meg, és a diákok egymás előtt foglalnak helyet, így az akadálymentes látótérrrel szembeni elvárás egy kicsit sérül, ezt próbálják meg javítani azzal, hogy a ma-
gasabb tanulók hátrébb foglalnak helyet. Az ember számára az ideális vízszintes látótér a szem tengelyétől jobbra, illetve balra 30°, de 65°-ig még elfogadható. Az ideális függőleges irányú látómező a szem tengelyétől 15°-on belül van a horizont felett, illetve alatt. Ez a tartomány még viszonylag kényelmesen, a szem vagy a nyak túlzott igénybevétele nélkül, könnyen belátható. Az így körülihatárolt tartományba kell a különböző szemléltető eszközöket, mint például táblát, interaktív táblát, kivetítőt, monitort elhelyezni.

Törekednünk kell arra, hogy az első sor kellő távolságra legyen a táblától, és az első sor szélén ülők is jól lássák a táblát. A fej forgatásával természetesen a látómező tovább bővíthető, de a tartósan egy irányba való nézés, illetve fordulás hosszú távon megerőltetheti a nyakat, a váll és hátövet, valamint a gerincet. Így ajánlatos a tanév során többször ülésrendet változtatni, hogy ezzel is csökkentsük az egyoldalú megterhelést.

Egy csoportos foglalkozáson a többfunkciós táblák elhelyezésekor a felhasználók (például kisiskolások) antropometriai méreteiket is szükséges figyelembe venni, így a legrugalmasabban és leghatékonyabban használható táblák az állítható magasságú táblák. (Ha mindez nem valósítható meg, akkor a kisiskolások számára a táblát 60 cm magasra kell elhelyezni a hagyományos 100 cm helyett.)

1.2.4 Számítógépes oktatási egység

A képernyős munkahelyek kialakítása során az Egészségügyi Minisztérium 50/1999 EüM rendeletét kell szem előtt tartani. A rendelet első része a berendezésekről, második része a környezetről, harmadik része pedig a szoftverről szól.
1.2.5 Berendezések, eszközök

A képernyő kiválasztása során fontos szempont, hogy a jelek jól felismerhetőek legyenek, stabil, villődzásmentes legyen a készülék, és hogy állítható legyen a fényesség és a jel-háttér kontraszt. A képernyő tükrözödéséről, a képernyő kiválasztása során fontos szempont, hogy a jelek jól felismerhetőek legyenek, stabil, villődzásmentes legyen a készülék, és hogy állítható legyen a fényesség és a jel-háttér kontraszt. A képernyő tükrözödéséről, a képernyő kiválasztása során fontos szempont, hogy a jelek jól felismerhetőek legyenek, stabil, villődzásmentes legyen a készülék, és hogy állítható legyen a fényesség és a jel-háttér kontraszt. A képernyő tükrözödéséről, a képernyő kiválasztása során fontos szempont, hogy a jelek jól felismerhetőek legyenek, stabil, villődzásmentes legyen a készülék, és hogy állítható legyen a fényesség és a jel-háttér kontraszt.

A billentyűzetek a monitor-tól különállók (laptop esetén különálló billentyűzet használata ajánlott), és dönthetők kell lennie. A billentyűzet felszíne fénytelen, és a billentyűkön megjelenő jelek egymástól könnyen megkülönböztethetőek és jól olvashatóak legyenek. Laptop esetén külön egér biztosítása is szükséges, mivel a touchpad használata során a csukló nincs megfelelően alátámasztva. Helytelen billentyűzet és egér használata következtében inhüvelgyulladás, RSI-CTD (Repetitive Strain Injury – Cumulative Trauma Disorder, azaz „ismétlődő igénybevételből eredő sérülés – halmozódó egészségkárosodás”) alakulhat ki, melynek tünetei az ujjhezádás és zsibbadás. A kézfej inhüvelgyulladásához hasonlóan felléphet a könyök csonttárgyagyulladása is, az úgynevezett teniszkönyök. Mindezek ellen megfelelő csuklótartással, és a csukló megtámasztásával, csuklótámasszal, lehet védekezni. A megtámasztás lényege, hogy a billentyűzet, egér különálló és megfelelő magasságban legyen, mely lehetővé teszi a kéz, csukló és a kar természetes helyzetét.

13. ábra: Az egészséges csuklótartás klaviatúra és egér használata közben
A billentyűzetet egy szintben kell elhelyezni az egeret, és elég közel ahhoz, hogy ne kelljen nagy mozdulatokat végezni a két eszköz között. (A kihúzható billentyűzet tartóknál sokszor szokott problémát okozni, hogy a billentyűzet mellett nem fér el az egér, így az egér az asztallap síkján kap helyet, mely használata közben állandó fel-lemozgást kell végeznie a kéznek, és a csukló sincs megfelelően alátámasztva.) Az egeret laza csuklóval kell fogni, és a billentyűzethez kialakított csuklótámaszhoz hasonlóan, ma már zselés csuklótámasszal ellátott egérdombok is kaphatók a piacon.

A wireless hálózatok megjelenésével a számítógépes munkahelyek elrendezése még rugalmasabb lett, de ezekben a helyiségekben továbbra sem szabad megfeledkeznünk a „kábelelvezetési lehetőségekről”, és így a kábelelvezetési lehetőségekről sem, mivel elektromos hálózati csatlakozást, töltést biztosíthatunk kell. A mobil eszközök töltését kétféleképpen biztosíthatjuk: vagy egy „tárolót/szekrényt” alkítunk ki az eszközök tárolására és töltésére, vagy pedig az asztalok elrendezése során biztosíthatunk elektromos hálózatot. Ebben az esetben a bútorápartó cégek bútoron belül különböző kábelelvezetési lehetőségeket biztosíthatanak, például kábelelvezető csatornákkal. Ha a számítógépes terem nem alakítható ki álapdíóval, akkor a kábelelvezető csatornák fokozott használata szükséges, mind a kábelek, adatok biztonsága érdekében, mind pedig a tanulók személyes biztonsága érdekében (el ne essenek a kábelekben).
1.2.6 Egy képernyős munkahely beállítása

A következőkben bemutatjuk egy klasszikus ülő testhelyzetű számítógépes munkahely beállításának főbb lépésein. (A hagyományos számítógépes elrendezésen túl a mobil képernyős eszközök kialakításánál lapoptartó állvány, vagy külön monitor, illetve különálló billentyűzet és egér használata szükséges a helyes kialakítás megvalósításához.)

A monitor olyan magasra állítsuk, hogy a képernyő közepét nézve vízszintesnél 20°-kal lejjebb nżünk, szinte a szemünkkel egy magasságba legyen a monitor legfelső sora. Manapság a laptop használatánál mindez nehezen valósítható meg, így használjunk külön képernyőt, illetve állítható magasságú lapoptartó „állványa” helyezzük a lapopot.

(Mindezt a vállóv a nyakunk és a szemünk terhelésének csökkentése érdekében fontos szem előtt tartani.)

Átlagos felhasználási esetben a monitor a billentyűzet és az esetleges papírdokumentumok azonos távolságra legyenek a szemtől. (Így a szemünknek nem kell állandóan fókuszált állványot váltania, következésképp lassabban fárad el a szemünk, az agyunk és így kevesebbet hibázunk.)

A monitor a szemünkön legalább 50-60 cm távolságra helyezkedjen el. (A fókusztávolságnak azért van jelentősége, hogy a szemünk lehessen állandónak fokuszálni a képernyőn.)

A képernyőnél 80 cm távolságra helyezkedjen el. (A képernyőnél 80 cm távolságra helyezkedjen el. (A képernyőnél 80 cm távolságra helyezkedjen el.)

A monitor középen előttünk (szimmetrikusan, nem jobbra, nem balra) helyezkedjen el. (Így elkerülhetjük a féloldalú megterheléseket és a kicsavaradott testhelyzeteket, valamint az ortopéd elváltozásokat.)

Az alkar munka közben vízszintes, vagy 10°-kal a vízszintes alatt, a felkar pedig függőleges legyen. Ez a karrhelyzet egyaránt szükséges a billentyűzet és az egér használatához is, ezért a billentyűzet és az egér azonos magasságban helyezendő el. (A megfelelő kéztartással megelőzhetjük, csökkenhetjük az RSI-CTD megbetegedéseket is.)

A kézféjnek az alkarral egy egyenesbe kell esnie, és a csukló alá legyen támasztva puha csuklótámasszal, vagy legalább az asztal szélén legyen biztosítva kb. 5 cm hely, ahova letehetjük az alkarunkat, de arra figyeljünk oda, hogy az asztallap széle ne vágja az alkart. (A csukló megfelelő alátámasztása fontos az RSI-CTD megbetegedések csökkenése érdekében.)
A 21. század iskolája

16.ábra: A hibás (helytelen) és a helyes (egészséges) ülés típus formái számítógépes munkahelyeken

A comb vízszintes, a lábszár pedig közel függőleges legyen, és a talpat alá kell támasztani. A vízszintes és függőleges helyzetek eléréséhez egyaránt szükséges a szék ülőlapjának és az asztal lapjának a magasságállítása, vagy fix asztalmagasság esetén állítható lábtámasz alkalmazása.

Az ülőlap megfelelő formájú és a terhelést egyenletesen eloszlató legyen (hogy a combot, illetve a combban futó ereket minél kevésbé nyomja). Az ülőlap vízszintes vagy a nézés irányába 2-3°-os lejtésű legyen. (A gerincünk ez a medencecsont-helyzet jobb, kényelmesebb, mintha az ülőlap a másik irányba dölne. Ha az ülőlap így döl, akkor viszont mindenképpen jó minőségű, súrlódást elősegítő kárpit használata szükséges, hogy ne terheljük a lábunkat a támaszkodással. Ennél meredekebb döntés a súrlódással már nem ellensúlyozható.)

Állítható magasságú legyen a deréktámasz, mellyel a 4-5-ös csigolyákat támaszthatjuk meg. (A derék megfelelő alátámasztása a gerinc természetes kettős „S” alakját biztosítja.)

Szinkronmechanikás legyen a munkaszék, melynek következtében a támlával együtt az ülőlap is megdől, együtt mozog pihenő pozícióban. A legjobb szinkron-
mechanikák a támla dölésével egy időben az ülőlapot nemcsak döntik, de vízszintesen is elmozdítják (az ing gyűrődésének elkerülése érdekében). A háttámla mozgása elősegíti a derékőv folyamatos alátámasztását.

Szélességében és magasságában legyen állítható a kartámasz. A kartámasz magasságának állíthatósága illeszkedjen az asztallap magasságához. (Így a könnyök, valamint az alkar megtámasztása a kartámaszon, csökkenti a gépelés közben az alkaron fellépő nyomási tüneteket.)

A forgószék görög legyen. (A könnyű mozgathatóság elsősorban a természetes „izgásmozgás-igény” biztosításához, másodsorban a csavart testhelyzetek elkerüléséhez szükséges.)

Fontos az elegendő körülifelül 70 centiméter széles lábtér biztosítása, a láb szabad mozgásának érdekében.

A megfelelően kialakított számítógépes munkahelyet is lehet rosszul, helytelenest testtartással használni. Nagyon fontos, hogy „teljesen beleüjünk” a munkaszékre, különben nem tudjuk kihasználni a munkaszékim két lehetőségeit.

A munkavégzés közbeni helyes testtartásra különböző szemléletes ábrákkal lehet emlékeztetni a számítógépes munkahelyet használót.

Álló számítógépes munkahely kialakításánál a monitor, valamint a billentyúzet és az egér beállításának fő lépései megegyeznek az ülő számítógépes munkahely kialakításának lépéseivel. Az álló számítógépes munkahely kritikus pontja az asztal, vagy pult magasságának beállítása. A munkafelületnek olyan magasnak kell lennie, hogy az alkar az asztal síkjában helyezkedjen el, valamint a felkar és az alkar merőleges legyen.

12.7 A képernyős munkahelyek világításának speciális kérdései

Nem jó, ha egy fényforrás (lámpa vagy ablak) a monitor mögött van: szemünk óhatatlanul hol a monitorra, hol mellé pillant – ettől káprázik a szemünk, és a következő pillanatban nem, vagy csak nehezen látjuk a monitor. (Ha az észlelt fényerő közti különbség túl nagy, akkor a pupillának sokat kell „dolgoznia”, ami vel nem az izommunka a probléma, hanem a művelet időigényessége: a sötét szobára tévedő pillantás hatására kitágult pupilla a képernyőre visszatévedve tizedmásodperceig túl sok fényt enged a retinára, ami nehezíti az információfeldolgozását.)

Ha egy fényforrás (lámpa vagy ablak) a monitorral szemben található, akkor a fényforrásból érkező fény megcsillanhat a monitor üvegén, és rontja a kontrasztot, a jelek felismerhetőségét, valamint káprázást is okoz.

Ezek alapján ideális esetben a fény beesése a monitor nézés irányára merőleges: azaz az ablak és a mesterséges fényforrás fénye vagy oldalról, vagy felülről essen.
A közvetlen fényforrásokon kívül természetesen számolni kell a tükrökkkel, csillogó felületekkel is, így például a lakkozott vagy fényesre mézolt falfelületekkel, stb. is. A számítógépes munkahelyekkel rendelkező helyiség területe lehetőleg legyen mentes minden fényes, jó fényvisszaverő képességű anyagtól (fényesre mézolt ajtó, ablaktok, ablakkeret, lakkozott bútor, lámpabúra, csempe vagy olajfesték, stb). A padlózat nem lehet lakkozott, előnyös a szönyegpadló, de csak a sima felületű, mert a szék csak ezen gurul. Az asztalnál vagy munkafelületnek is matt tónusúnak kell lennie, illetve az asztalon nem lehetnek fényes irattartók.

Mivel az ablakból érkező fény erősen változó irányú és szórt, ezért a monitor az ablakhoz 2 m-nél közelebb nem javasolt elhelyezni.

Az esetleg mégis fellépő tükröződés hatása ellen hasznos lehet monitorszűrőt alkalmazni: a monitorszűrők elsődleges funkciója a közhiedelemmel ellentétben nem a sugárzás elleni védelem, hanem az, hogy csak a monitorra merőleges fényszugarakat engedik át magukon. Így a nem teljesen a fejünk mögött lévő fényforrás már nem tud megcsillanni a monitoron (a fejünk mögött lévőt pedig úgyis kitakartuk…). A monitorszűrők ezen tulajdonságát biztonsági céljával is szokták alkalmazni, hogy a képernyő tartalmába oldalról ne tekinthessenek bele.

Az ablakokat állítható takaróeszközök megfelelő rendszerével kell ellátni, hogy a képernyős munkahelyre eső nappali megvilágítást csökkenteni lehessen. Az ablakokat jó fényszűrő hatású paszteleszínű függönnyel, szalagfüggönnyel illetve relaxával takarhatóvá érdemes tenni (HERCEGFÉ K., IZSÓ L., 2007).

Kritikus tartomány

A képernyőn szembe tükröződő belső tér

17.ábra: A monitoron tükröződő/megcsillanó fény elkerülése érdekében a kritikus tartományban nem szabad fényforrásnak lennie
1.3. A fizikai környezet kialakításának ergonómiai szempontjai

A 21. századi iskolában a modern tanítási módszerek támogatása nem merülhet ki csak a modern informatikai eszközök biztosításával, használatával, hanem az eszközök használatát támogató modern oktatási környezet kialakítása is szükséges. Gondoljunk csak bele, ha nem megfelelően van kialakítva a tanterem, akkor egy tanítási órán hiába biztosítunk a diáknak mobil számítógépet, nem tudja használni, mivel például nem látja képernyőjét a háta mögött lévő ablak okozta becsillagástól.

Az ilyen és ehhez hasonló problémák megelőzése, kiküszöbölése során a modern tanulási környezet megtervezésénél, kialakításánál figyelembe kell vennünk az épített környezet adottságait, a környezet használóinak (tanulók, tanárok, irodai dolgozók, takarítók, karbantartók, stb.) sajátos jellemzőit és emberi igényeit. Az emberi használatra való tervezéssel az ergonómia tudomány foglalkozik. Murrell, az angol Ergonómiai Kutatási Társaság egyik alapító tudósa így definiálja az ergonómiait. „Az ergonómia az ember és munkakörnyezete kölcsönhatásának tudományos tanulmányozása. A munkakörnyezet azonban ebben az értelemben nem csupán a dolgozót körülvevő fizikai környezeti tényezőket jelenti, hanem a munkavégzés során használt eszközöket, anyagokat, továbbá a munkamódszert, a munka szervezetét, akár egyéni, akár csoporton belül végzett munkáról van szó. Mindezek kapcsolatban vannak magával az emberrel: a képességeivel, a lehetőségeivel és a korlátaival.” (Murrell, 1965)

Tehát az ergonómia fő célja a hatékonyság növelése és az emberi igények kielégítése. E párhuzamos törekvések érvényre juttatása azonban szinte mindenkor csak kisebb-nagyobb kompromisszumok árán lehetséges, azonban a fő kérdés az, hogy a hatékonyság növelése milyen emberi (biológiai, pszichológiai, szociális) „ráfordítás” árán valósítható meg.

E ráfordításnak a társadalom által elfogadott mértéke jelentősen függ az adott társadalom fejlődésétől, a társadalmi-gazdasági jóléttől és az intézményrendszerek működésének demokratizmusától. Ez az emberi ráfordítás azonban egyetlen társadalomban sem lehet olyan mértékű, amely már eleve magában hordozza a baleset bekövetkezésének, az ember testi és/vagy szellemi károsodásának, egészsége és munkaképessége csökkenésének kockázatát.

A fejlett társadalmakban az ergonómia az élet szinte minden területén megjelenik, például ergonómiai szempontok érvényesülnek a lakásban, az irodában, az iskolában, a közlekedésben, stb. Ennek megfelelően a hatékonyságról is többfajta
A 21. század iskolája

Értelemben lehet beszélni, mint például a nagyobb termékkibocsátás, a gyorsabb termelés, magasabb minőség, vagy egy oktatási intézmény esetében az egyes használt eszközök célszerűsége, hatékoný alkalmazhatósága.

Hasonlóképpen az „emberi igények” fogalomkört is tágán kell értelmezni. Az egészségkárosodás kizárása és a testi biztonság szavatolása mellett a komfortérzés és a jó közérzés biztosítása éppúgy fontos célkitűzése az ergonómiának, mint a különböző emberi készségek fejlesztéséhez nélkülözhetetlen munkafeltételek – lehetőség szerinti – megteremtése. Ma már egyre inkább általános nézét az, hogy az ergonómia alkalmazása nem csupán gazdasági rationalitás, hanem egy társadalom fejlettségének, a benne élők életminőségének egyik fokmérője is. (Antalovits M., 1993.)

Ebben a fejezetben bemutatjuk, hogy egy 21. századi iskolában a modern tanítási módszerek, modern tanítási eszközök használatát támogató tanítási környezet kialakítása során milyen általános, majd az egyes munkavégzéseknek megfelelő, specifikus környezeti tényezők figyelembe vétele szükséges. Valamint megoldási javaslatokat, tervezési irányelveket adunk az egyes fizikai környezeti tényezők kialakításával kapcsolatban.

1.3.1 Fizikai környezet tényezői

A fizikai és társas környezet kialakításánál ergonómiai szempontból hat tényezőt kell figyelembe vennünk, mégpedig a világítást, a zajt, a rezgéseket, a klímát, a levegőminőséget és a meteorológiai tényezőket. (Jelen tanulmány a rezgésekre és a meteorológiai tényezőkre nem tér ki.) A tényezők bemutatása során felhívjuk a figyelmet az egyes környezeti tényezőkkel szemben állított követelményekre, az éppen aktuális hatályban lévő rendeletekre hivatkozva, valamint az egyes tényezőkkel kapcsolatosan megjelenő általános problémák bemutatására és azok megoldására teszünk javaslatot, törekedve a legújabb és legmodernebb technikai, technológiai megoldások alkalmazására.

1.3.1.1 Terek, térkapcsolatok

Egy modern tanulási környezet térkialakítása során figyelembe kell vennünk, hogy a tanulókat körbevevő architekturális környezet hatással van a benne élő emberek közérzetére, viselkedésére, biztonságérzetére. A kialakítás egyik fő szempontja lehet a koherencia, mely az építészeti formák következetes használatát és érthetőségét jelenti, ami a tanítók, tanulók könnyebb tájékozódását, az épület, az egyes helyiségek könnyebb azonosíthatóságát segíti. Az épületek labirintusszerű, zegzuges kialakítása csökkenti a tér átláthatóságát, kontrollálhatóságát, mely bizonytalanságérzést kelt az emberekben, valamint a labirintusszerű
épületében a közlekedés is nehéz, időigényes. Diszkomfort hatást kelthet még például az alacsony belmagasság (minimum 2,9 m) is, mely szorongásérzést okoz az emberekben.

A teljesség igénye nélkül a következőkben bemutatunk néhány példát az oktató intézmények épületeinek kialakítására, a térszervezés és a helyiségelosztás szempontjából.

1.3.1.2 Centrális térszervezés

A centrális térszervezés esetén az iskolaépületet felülnézetben kereszt alakúnak látjuk. A két szár metszetében, középen kapnak helyet a nagy közösségi terek, mint például az aula, vagy a zsibongó, valamint ehhez a térhez közel helyezkednek el azok a helyiségek, melyeknek nagy az „ügyfélforgalma” és fontos a könnyű megközelíthetősége, mint például a tanári szoba, a búfé, a higiénés helyiségek, stb. A szárak, a központi résztől egyenlő távolságra vannak, melyek könnyen áttekinthetők, felügyelhetők. A sugárirányú szárak lehetővé teszik, hogy funkcionális szempontból elkülönítsük az egyes szervezeti egységeket, ezzel is biztosítsa a könnyű megközelíthetőséget, valamint a szeparált, nyugodt munkavégzést. Ilyen szervezési elv lehet például az egyes évfolyamok, tagozatok, tevékenységek szerinti felosztás.

1.3.1.3 Átriumos térszervezés

Az átriumos térszervezés általában az olyan közösségekre jellemző, amely félti az identitását, autonomiáját. Ezt a térszervezési formát főként a papok, apák és a katonaság alkalmazza, de sokszor az oktatási intézmények is követik ezt az építési formát. Jellemző, hogy az épület egy nagyméretű teret, udvart vesz körbe, mely az egész intézményen belül jól átlátható, kontrollálható, így olyan oktatási intézmények kialakítására alkalmas ez a térrendezés, ahol sok a szabadidő és fontos a fokozott felügyelet.

Hasonlóképpen az átrium alkalmazás különböző közösségi terek kialakítására is, valamint különböző rendezvények lebonyolítására. A kialakítás nagy hátránya, hogy az udvart körülvevő épület a tanulóknak bezártságérzést okozhat, valamint, hogy az épület alapterületéhez képest kicsi az udvar.
1.3.1.4 Fésűs térelrendezés

A fésűs térelrendezés elsősorban olyan intézménytípusokra jellemző, ahol az egyes egységek funkcionálisan való elkülönítése nemcsak a térszervezésben, de építészetileg is megjelenhet. Az alaprajz felülnézetetől általában „E” betűt formáló három, vagy több épületszárnyból áll, mely főként többszintű, lépcsőházás elrendezés formájában valósul meg. Ez a térelrendezés előnyös az egyes funkcionális egységek jó elkülönítéséhez, mint például az alsó, és fel-só tagozatos tanulók elkülönítésére, valamint a műhelyek és a tornaterem funkcionális le-választására.

1.3.1.5 Helyiségek kialakítása

A 21. századi iskolák tervezésekor az egyetemes tervezési elvek (angol kifejezéssel élve „Design for All”) érvényesülnek, melyeknek célja, hogy olyan megoldásokat hozzunk létre, amely egyszerű megfelel az ép és a speciális felhasználóknak egyaránt. (Gondoljunk arra, hogy nemcsak egy kerekesszékes tanuló lehet speciális felhasználó, hanem egy első osztályos szülői értekezlet során az iskolapadban akár a szülők is speciális felhasználóknak számítanak, mivel nem az ő testméreteikre lettek tervezve az iskolapadok és iskolaszékek.)

Az oktatási intézmények akadálymentes kialakításához a BM Építésügyi Hivatal által kiadott „Tervezési Segédlet az akadálymentes épített környezet megvalósításához” segédlet ad útmutatót. A közoktatási intézmények elhelyezésének és kialakításának építészeti-műszaki követelményeivel a 19/2002. (V.8) OM rendelet foglalkozik. Ez alapján a tervezési program alapján a 21. ábrán bemutatjuk néhány helyiséges tervezési előírását a minimális alapterület és a befogadó képesség függyénében.

Az előbbi rendelet szerint az oktatási intézmények kialakítása során az azonos vagy hasonló rendeltetésű helyiségekből funkcionális egységeket kell szervezni. A funkcionális egységeket a hatékonyabb működés érdekében lehetőleg tömör építészeti kialakítású (aula, csarnok-zsibongós, stb.) alaprajzi rendszerekbe szükséges kialakítani, mely során célszerű átgondolni, hogy az egyes funkciók hogyan kapcsolódnak egymáshoz a különböző tevékenységek és munkaszervezés mellett.

Így az épület kialakításánál fő szerezési elv az ember-, az anyag- és az információáramlás, mely szerint az épület főbejáratánál van a legnagyobb átmenő forgalom, amit a portán keresztül ellenőriznek, valamint a második nagy forgalmú tér az aula és az étkező. Ezekben a terekben, csomópontokban az átmenő forgalom függyénében kell megtervezni az ajtókat és a folyosókat is.
A 21. század iskolájának tervezési előírásai a minimális alapterület és befogadóképesség függvényében

<table>
<thead>
<tr>
<th>Helyiségek</th>
<th>Tervezési előírások</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanterem</td>
<td>Alapterülete: 2,0 m²/fő (legalább 52,0 m², legfeljebb 68,0 m²)</td>
</tr>
<tr>
<td>Könyvtár</td>
<td>Alapterülete: legalább 52,0 m²</td>
</tr>
<tr>
<td>Számítástechnikai szaktanterem</td>
<td>Alapterülete: 4,0 m²/fő (legalább 69,0 m², legfeljebb 99,0 m²)</td>
</tr>
<tr>
<td>Idegen nyelvi, nemzetiségi, etnikai szaktanterem</td>
<td>Alapterülete: 2,0 m²/fő (legalább 52,0 m², legfeljebb 82,0 m²)</td>
</tr>
<tr>
<td>Rajzterem</td>
<td>Alapterülete: legalább 69,0 m², legfeljebb: 82,0 m² Egyenletes szőrt fényű megvilágítást kell biztosítani.</td>
</tr>
<tr>
<td>Igazgatói iroda</td>
<td>Alapterülete: legalább 18,0 m²</td>
</tr>
<tr>
<td>Nevelőtestületi szoba</td>
<td>Alapterülete: 2,0 m²/fő, legalább 25,0 m² (általános iskola)</td>
</tr>
<tr>
<td></td>
<td>Alapterülete: 3,0 m²/fő, legalább 50,0 m² (gimnázium, szakközépiskola)</td>
</tr>
</tbody>
</table>

A nyilászáró szerkezetek kialakításánál fokozottan figyelembe kell venni az intenzív igénybevételt és balesetveszélyt, ezért a mélyen üvegezett szerkezeteket vagy ütésálló üvegezéssel vagy az üvegtörést és -kiesést gátló szerkezetel kell megvalósítani. A balesetvédelem és az épület tartósságának megóvása érdekében a kiálló falsarkokat legalább 2 méter magasságig lekerekített élvédőkkel kell ellátni (19/2002 (V.8.) OM rendelet alapján).

A folyosó kialakításához hasznos útmutatót ad a „Tervezési Segédlet az akadálymentes épített környezet megvalósításához, mely segítségével a tanulók számára biztonságosabb (például, nem megy neki egy nyitott ablaknak), és könnyebben és hatékonyabban használható tereket (például megfelelő tájékozott feliratok segítségével) alkalmazunk, ezzel is biztosítva az ergonómia három kritériumát, úgy mint a biztonságos, hatékony és kényelmes termék/környezet használatot.

A 21. század iskolájában a különböző közösségi terekben, mint például az auditoriában, a folyosón wireless internettel rendelkező informális kommunikációs terek, break pontok jelennek meg, ahol a diákok gyorsan és könnyen csatlakozhatnak a világhálóhoz, vagy a csoportos feladatukra fel tudnak készülni. Továbbá a közösségi terekben különféle információs pontok is megjelenhetnek. Ezek kialakításánál szükséges biztosítanunk a könnyű megközelíthetőséget, és a kellő mértékű leválasztást az elmélyült munka elvégzésének biztosításához.
Mint már említettük, az egyes helyiségek elhelyezésénél szükséges átgondolni a helyiségek funkcióit, így például a nevelőtestületi szobát érdemes központi helyre helyezni, így a tanulók is könnyen tudnak a tanárokhoz fordulni problémáikkal, valamint a tanárok is könnyen és gyorsan tudják megközelíteni az oktatási helyiségeket. Továbbá a különböző szaktantermeket, laborokat, műhelyeket, tornateremet elszeparáltabban kell elhelyezni ezzel is biztosítva a hangszigetelést, a biztonságot, a balesetmentességet.

A helyiségek kialakítása során már a tervezéskor érdemes tudni, hogy milyen jellegű oktatás fog folyni a helyiségben és ennek megfelelően kell kialakítani. Gondoljunk csak bele, hogy ha egy tanítási óra alatt a tanár egy filmet szeretne vetíteni, amelynek hangja is van, akkor a termet már ennek megfelelően a szükséges hangosítási berendezésekkel is el kell látni, valamint a kivetítőt, képernyőt, interaktív táblát úgy kell elhelyezni, hogy becsúszólagas mentes legyen (például merőlegesen a természetes fénnyel). Továbbá a helyiségkialakítás során a táblát olyan irányba kell elhelyezni, hogy a tanulók írás közben balról kapják a természetes
megvilágítást, vagy ha a diákok a tanórán mobil számítógépet használnak, akkor a mobilitás jegyében az elrendezésnek megfelelően könnyen tudjanak hálózati áramforráshoz csatlakozni a „kábeldzsungel” elkerülése nélkül, ápadló, vagy különböző parapetcsatornák, DLP-rendszerek segítségével.

1.3.1.6 Megvilágítás

Egy helyiségben folyó munka minőségét nagymértékben meghatározza a helyiség megvilágítása is. Megvilágítás szempontjából megkülönböztetünk természetes és mesterséges megvilágítást. Az embereknek szükségük van a természetes fényre, mivel ennek hiányában depressziósak lesznek. Így egy tanterem kialakításánál is törekednünk kell arra, hogy minél nagyobb felületen kapjon természetes fényt a helyiség. Ha egy helyiségben csak természetes megvilágítást használunk, akkor a helyiség alapterületének 15-20%-ának ablakfelületnek kell lennie (az OTÉK alapján), illetve a bevilágító felület és a helyiségterület arányának legalább 1:6 kell lennie (19/2002 (V. 8.) OM rendelet alapján). A természetes megvilágítás erőssége évszakonként és napszakonként is változik, így ha túl sok a természetes fény, akkor szabályozásához nélkülözhetetlen különféle állítható, cserélhető és könnyen karbantartható árnyékolási lehetőségek használata. A 21. századi iskolákban az automatikus árnyékoló berendezések nemcsak a természetes megvilágításhoz kell automatikusan alkalmazkodniuk, hanem a termémben folyó munkához is, így például a projektor bekapcsolásakor a megfelelő árnyékolás automatikusan megtörténhet, sőt azt is beállíthatjuk, hogy teljes sötét séget szeretnénk például egy oktatófilm vetítéséhez, vagy továbbra is szeretnénk még némi természetes megvilágítást biztosítani a jegyzeteléshez.

Az ablakfelülettől távolodva a természetes megvilágítás erőssége csökken, a helyiség belsejébe a természetes fénynek csak töredéke jut el, így ahol nem elegendő a természetes megvilágítás, ott szükséges a mesterséges megvilágítással való kiegészítés, tehát nagyon sokszor a két megvilágítási formát vegyesen
alkalmazzuk. Jó, ha a mesterséges megvilágítás az ablakkal párhuzamosan külön szakaszolható, mivel aki az ablak mellett ül, az még lehet, hogy nem kapcsolná fel a világítást, de aki a helyiség belsejében, messzebb az ablaktól, az már igen. A mesterséges megvilágítás tervezésénél figyelembe veendő szempontok még a helyiségben folyó tevékenységek és az elrendezés.

A mesterséges megvilágítás kialakításánál a cél általánosságban a természetes hatáshoz közeli megvilágítás elérése. Ez akár azt is jelentheti, hogy nem egyértelműen a nagy és egyenletes megvilágítás a cél: az újabb kutatások szerint az időben lassan, dinamikusan változó megvilágítás mellett a munka hatékonyabb és kevésbé fáradtságot, stresszt okoz (Izso & Majoros, 2002), hiszen a természetes megvilágítás esetében is azt szoktuk meg, hogy időnként elmegy egy felhő az ablak előtt, stb.

A következőkben megfogalmazott, mesterséges megvilágítás tervezésére vonatkozó legfontosabb irányelveket, megvilágítási értékeket elsősorban a 19/2002. (V. 8.) OM rendelet, a közoktatási intézmények elhelyezésének és kialakításának építészeti-műszaki követelményeiről szóló rendelet tartalmazza. (A megvilágítás erőssége az egységnyi felületre beeső fényáram, melynek mértékegysége a lux, és a vizsgálandó felületen, például az asztallap síkjában mérendő.)

<table>
<thead>
<tr>
<th></th>
<th>legalább: 400 lux</th>
<th>kívánatos: 500 lux</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,65–0,95 m magasságban lévő munkafelület szükséges megvilágítása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falitábla vonatkozó követelmény</td>
<td>legalább: 400 lux</td>
<td>kívánatos: 500 lux</td>
</tr>
<tr>
<td>Közlekedő, szertár, egyéb</td>
<td>legalább: 80–100 lux</td>
<td></td>
</tr>
</tbody>
</table>

24.ábra: Mesterséges megvilágítási értékek (Forrás: 19/2002. (V.8.) OM rendelet)

A mesterséges fényforrásból eredő fénynek három fajtáját különböztetjük meg: a közvetlen (direkt) megvilágítást, a szórt (diffúz) megvilágítást és a közvetett (indirekt) megvilágítást. Általában a közvetett (indirekt) megvilágítás tekinthető a legjobbnak, a legtermészetesebbnek, de a fényviszszaverődés nagy vesztesége miatt ez gyakran túl költségesnek (és energia-pazarlónak) tekinthető.

25.ábra: Mesterséges megvilágítási fajták
A mesterséges megvilágítás lehet általános és helyi megvilágítás is. Az általános megvilágítás célja a helyiség egyenletes szőrt fénytel való ellátása. Az általános megvilágítás tervezésekor oda kell figyelni a zavaró árnyékokra és a káprázás elkerülésére is. Az általános megvilágítást semleges vagy meleg színhőmérsékletű fényforrással kell biztosítani. Mint már említettük, a fényforrások az ablakkal párhuzamosan legyenek elhelyezve, és a világítótestek elhelyezése igazodjon a munkahelyek elrendezéséhez. A káprázás elkerülése miatt a munkaasztalok a lámpatestekből kialakuló sorok közé kerüljenek úgy, hogy a fényforrások ne pont felettük helyezkedjenek el.

A mesterséges megvilágítás lehet általános és helyi megvilágítás is. Az általános megvilágítás célja a helyiség egyenletes szőrt fénytel való ellátása. Az általános megvilágítás tervezésekor oda kell figyelni a zavaró árnyékokra és a káprázás elkerülésére is. Az általános megvilágítást semleges vagy meleg színhőmérsékletű fényforrással kell biztosítani. Mint már említettük, a fényforrások az ablakkal párhuzamosan legyenek elhelyezve, és a világítótestek elhelyezése igazodjon a munkahelyek elrendezéséhez. A káprázás elkerülése miatt a munkaasztalok a lámpatestekből kialakuló sorok közé kerüljenek úgy, hogy a fényforrások ne pont felettük helyezkedjenek el.

A finom preciz munkák végzéséhez az általános megvilágításon túl helyi megvilágítást (például olvasólámpát) is kell biztosítani, melynek a munkavégzéshez kell igazodnia, és könnyen mozgathatónak, állíthatónak és rögzíthetőnek kell lennie. A műhelyekben, laborokban és irodákban az általános megvilágításon felül szükség szerint helyi megvilágítást is kell biztosítani.

A mennyezet, falak, padlók bútork, gépek fényvisszaverési tényezőjével is számolunk kell egy megvilágítás tervezése során, mivel az erősebben visszaverő (tiszta fehér) felületek esetén kisebb erősségű fényforrások is elegendők.

Már általános elvárás, hogy a világítás villódzásmentes legyen, valamint a színvisszaadása segítse a természetes megjelenést és biztosítsa a feladat által megkövetelt színjelzések egyértelmű felismerését. Manapság már gyártanak olyan szőrt fényt kibocsátó izzókat is, amelyek a látóterülekre kerülve is kevésbé okoznak káprázást. A legegyszerűbb közvetlen megvilágítás kialakításánál a káprázás elkerülésére is oda kell figyelnünk (HERCEGFI K., IZSO L. szerk., 2007).

Képernyős munkavégzés során általános probléma a káprázás. Káprázásról akkor beszélhetünk, ha egy viszonylag erős fényforrás, vagy annak visszavert képe megjelenik a látómezőben. Megkülönböztetünk direké és tükröződő káprázást. A káprázás csökkentheti a láthatóságot, vizuális diszkomfort érzést okozhat, ingerülté teheti az embert, valamint sietteti a szem kifáradását, ezáltal csökkenti a hatékonyságot és növelheti a balesetveszélyt.

A káprázás csökkentése érdekében a látómező központja körüli 60 fokon belüli fényforrásokat el kell távolítani, illetve szemellenzöt kell használni. A káprázást csökkenthetjük úgy is, ha indirekt megvilágítást alkalmazzunk, valamint tompa, matt felületek jelennek meg a környezetben (HERCEGFI K., IZSO L. szerk., 2007).

A nem megfelelő, az elégtelen megvilágítás, a túl kevés fény vagy a csillagások és káprázások okozta információfeldolgozási nehézség diszkomfort érzetet okoz, ingerülté teszi az embert, és sietteti a szem kifáradását. Ez időveszteséghez, megnövekedett hibázásokhoz, valamint fejfájászhoz és szédüléshez vezethet.
1.3.1.7 Klimatikus tényezők

Egy oktatási intézmény kialakítása során a megfelelő klimatikus környezet kialakításáról sem feledkezetünk meg. A klimatikus környezet meghatározó tényezői: a hőmérséklet, a páratartalom, a légmozgás és a hősugárzás. Ezek közül termé szetesen döntő a hőmérséklet, a többi inkább módosító jellegű, de a módosító hatás igen jelentős is lehet.

1.3.1.8 Hőmérséklet

Egy tanteremben a 19/2002 (V.8.) OM rendelet alapján 20 °C-t kell biztosítani. De mint már a világításnál említettük, a hőmérsékletnél is meg kell említenünk, hogy a tanulók hőérzete attól is függ, hogy hol helyezkednek el a tanteremben. Az ablak mellett ülőkre nyáron odatűz a nap, és sokkal melegebbnek érzik a hőmérsékletet, mint akik távolabb ülnek az ablaktól; míg télen, a fűtőtest mellett ülők (hisz ez az ablak alatt kap helyet), számára megfelelő a hőmérséklet, de akik távolabb ülnek azok fáznak.

Egyes tanteremtípusokban, mint például a számítástechnika teremben, az előírt hőmérséklet változhat például a hőhézagban elhelyezett gépek által termelt hőmennyiség kompenzálása miatt. Erre megoldás lehet egy megfelelően kialakított klimatikus berendezés alkalmazása, illetve a hőt termelő berendezések külön helyiségbe való elhelyezése.

Az oktatási intézmények fűtésrendszerének kialakításánál biztosítani kell a fűtés szakaszhatóhatóságát és szabályozhatóságát is. Meg kell különböztetnünk a dél-előtti, délutáni és esti fűtési szakaszokat, valamint az osztálytermek hőmérsékletét külön is szabályozhatóvá kell tenni. Ezzel nemcsak a felhasználók komfortérzetét növelhetjük, hanem a gazdaságosságot is.

1.3.1.9 Levegőminőség

A hatékony munkavégzés érdekében folyamatosan friss levegőjű helyiségeket kell biztosítani mind a tanulók, mind a tanárok, dolgozók számára a komfortérzet, a koncentráció és a teljesítmény fenntartása érdekében. Így azokban a helyiségekben, ahol lehetséges a friss levegő utánpótlása, ott természetes levegő utánpótlásával kell megoldani a levegő „frissítését”, míg ahol ez nem lehetséges, ott levegőcserélő berendezések üzemeltetése szükséges, mint például egy aulában vagy egy tornateremben. A mesterséges szellőztetésnél törekednünk kell a légáram szabályozására, a huzatérzet elkerülésére, a zajtalanságra és az egyenlétségre.

Különböző kutatások kimutatták, hogy különböző növények elhelyezése egy helyiségben nemcsak a levegő tisztaságát és párasítását szolgálja, hanem a helyiségben dolgozók közérzetét is nagymértékben javítja.
A megfelelő levegőminőségre fokozottabban oda kell figyelni a műhelyekben, laborokban, fénymásoló helyiségekben, ahol a különböző ragasztók, vegyszerek alkalmazása miatt vegyi anyagok, valamint őzon szabadulhat fel. Ezekben a helyiségekben, ha szükséges, külön elszívó berendezéseket is biztosítani kell.

1.3.1.10 Zaj

Egy oktatási intézményben természetes jelenség a szünetekben a gyerekzsvaj, a zaj. Míg szünetekben, szabadidőös tevékenység alatt mindez megengedett, addig a tanórák alatt és különböző helyzetekben megpróbáljuk csökkenteni a zajterhelést, védekezünk ellene. Egy intézmény működése során megkülönböztetünk külső- és belső zajforrásokat. Külső zajforrásnak tekintjük egy iskola életében az iskola külső környezetéből (például egy forgalmas utcáról, szomszédos épületekről, stb.) beszűrődő zajokat, vagy ha csak egy tanterem tevékenységét nézzük, akkor az udvarról, folyosóról, szomszédos teremből beszűrődő zajokat, hanghatásokat. Belső zajforrás az épületen belül, illetve a tantermen belül, a különböző tevékenységek, gépek okozta zajok lehetnek.

Az oktatási intézményekben a megengedett maximális zapszint 60 dB, amelynek tartós jelenléte pszichikus hatásokkal járhat. Először adaptálódnak a hallószerv, mely során a tartósan azonos erősségű ingerhez egy bizonyos idő után hozzácsökkent a hallósszerv, és már észre se vesszük, fel sem figyeljünk a zajterhelésre, de a szervezetünk mindenre reagál. Gondoljunk csak bele, ha 45 percig egy projektor zúg mellettünk, nem tudjuk megfogalmazni, hogy miért leszünk egyre feszültebbek, miért feszülne meg az izmaink, de amikor kikapcsolják a projektor, akkor megkönnyebbülünk, ellazulunk. Tehát a zapszint alatti zajterhelés is zavaró hatású lehet.

1.3.1.11 Társas környezet

Az oktatási intézményekben tanulók és ott dolgozók ébren töltött idejük majdnem fele az intézményben, az intézmény környezetében találjuk, így a személyesség, a testszabadhatóság iránti igény egyre nagyobb. (Egy bizonyos térrel a helyterületen érdemes biztosítani az evolúciós szinten belépőt táplált „területi”, területbirtokló viselkedést.) Gondoljunk itt csak arra, hogy egy osztály „személyre” szabja az osztálytermét, kidíszítik, kiteszik kirándulásaik alatt készített fotóikat, miég egy szaktanterem, például egy kémiai labor „személyre szabását” a falra szerelt periódusos rendszer jelentheti.

Az embernek, mint egyedi testi méretekkel rendelkező biológiai lénynek meghatározott térrre van szüksége. A munkavégzéshez, tanuláshoz szükséges személyes tér korlátozását szorongásos stresszként éljük meg. A személyes tér egy
láthatatlan elképzelt henger, melynek tengelye a test függőleges tengelye, vagy egy buborék, amely teljesen körbevesz. Mérete változik az interakcióis partner függvényében, és kultúránként is eltérhet.

A személyes tér kialakításánál, mint minden egyébnél, figyelembe kell venni, hogy milyen tevékenység folyik az adott tanteremben, irodahelyiségben. A különböző típusú tevékenységek a közreműködés és a párbeszéd különböző szintjeit igénylik. A test körüli 45 cm sugarú körben az ember bizalmas tere helyezkedik el (ez az intim zóna). A munkavégzés helyszíne a 45-120 cm sugarú kör, ez a személyes zóna. A társas zóna 120-360 cm között van, ez a távolság alkalmas az együttműködésre, vagy például egy szóbeli felelésre, vizsgára. Ezen kívüli terület a nyilvános zóna, ami már kevessé befolyásolja a munkavégzést.

26.ábra: A tágas belső tér és a növények jótékonyan hatnak a tanárok és a diákok közérzetére.
(Békésy György Szakközépiskola, Budapest)
A 21. SZÁZAD ISKOLÁJA

Felhasznált irodalom

MAHNKE, F. H. (1996):
Color, Environment and Human Response.
New York: John Wiley & Sons.

NUHFER, E. B.:
Some Aspect of an Ideal Classroom: Color, Carpet, Light and Furniture.

MOLNÁR GYÖNGYVÉR (2007a):
Új ICT eszközök alkalmazása az iskolai gyakorlatban.
In: KOROM ERZSEBET: Kihívások a XXI. század iskolájában.

GYÖNGYVÉR MOLNÁR (2007b):
New ICT Tools in Education - Classroom of the Future Project.
In: DRAGAN SOLESA (szerk.): The fourth international conference
on informatics, educational
technology and new media in education.

NAGY N.:
Iskolai ergonómia

19/2002. (V. 8.) OM rendelet A közoktatási intézmények elhelyezésének és
kialakításának építészeti-műszaki követelményeiről

50/1999. (XI. 3.) EüM rendelet A képernyő előtti munkavégzés minimális
egészségügyi és biztonsági követelményeiről

ANTALOVITS M. (1993): Az ergonómia a formálódó piacgazdaságban:
új hatások, új kihívások. Ergonómia, 26, 1-6.o.

HERCEGFI K., IZSÓ L. szerk. (2007):
Ergonómia,
Tipotex, Budapest.
Dynamic Lighting as a Tool of Finding Better Compromise between Human Performance and Strain.

Munkahelyi veszélyek: fájó testrészek.
IT – Irodakultúra és technológia, 2004/2. sz. 36-37.o.

MAJOROS A. (2004):
Belsőtéri vizuális komfort.
Terc, Budapest.

1998. évi XXVI. törvény A fogyatékos személyek jogairól és esélyegyenlőségük biztosításáról

19/2002. (V. 8.) OM rendelet A közoktatási intézmények elhelyezésének és kialakításának építészeti-műszaki követelményeiről

HALL E. (1995), :
Rejtett dimenziók,
Gondolat, Budapest

NEMCSICS A. (1990):
Színdinamika. Színes környezet tervezése.
Akadémia Kiadó, Budapest.
2.1 Multimédia

2.1.1 Interaktív tábla használatának oktatástechnológiai kritériumai

Makó Ferenc

A tanítás minősége, az innovációk sikere alapvetően a pedagógusokon múlik. A változás nem önmagában véve az újonnan megjelenő taneszközök használatától várható, sokkal inkább a tanulási helyzetek, módszerek újszervezésétől és a tanárok azon kompetenciáitól, amelyek lehetővé teszik számukra, hogy az új interaktív taneszközöket és médiumokat a tanulási folyamat megváltoztatásához eredményesen fel tudják használni. Ennek reprezentáns taneszköze az interaktív tábla, amely a legközvetlenebb módon segíti elő a multimédia technológiák tanulói célcsoportok szerinti adaptív felhasználását. A multimédia technológiák interaktív táblás használata ugyanakkor új oktatástechnológiai kompetenciák bir- toklását, a módszertani felkészültség fejlesztését is igényli a tanároktól.

Ma már, éppen az oktatástechnológia fejlődésének köszönhetően, a tudás közvetítésben, a tanulási folyamatban, olyan taneszközök és médiumok is megjelenhetnek a tantermekben, amelyek forradalmi változásokat eredményezhetnek. Mindez az interaktív tábla elképzelése, amely a frontális óravezetés és a tanuló aktív tevékenysége alapján a kollaboratív tanulást előidézhet. Az interaktív táblák használata az eLearning alapú oktatás és a multimédia technológiák előnyeinek szegmentált felhasználásával a tudáshoz történő jobb hozzáférést-, a szemléletesebb oktatást segítik elő az iskolákban. Az interaktív tábla rendszerek által összekapcsolt oktatástechnikai kollaboratív kollaboratív tanulása között. Az interaktív táblák használata az eLearning alapú oktatás és a multimédia technológiák előnyeinek szegmentált felhasználása- a tudáshoz történő jobb hozzáférést-, a szemléletesebb oktatást segítik elő az iskolákban. Az interaktív tábla rendszerek által összekapcsolt oktatástechnikai forradalom (IKT, hipermédia, virtuális valóság eszközök, online valóság) és módszertani kultúraváltás (kompetencia elv, szituatív tanulás) a tanulás alapvető megváltozását eredményezheti.

Az interaktív tábla használatára megoldást nyújt arra a kérdésre, hogy hogyan lehet egyszerűen és eredményesen beilleszteni az iskolai oktatásba az elektronikus tanítás/ tanulás multimédiás és WEB alapú technológiáit. Az interaktív tábla használatával lehetővé válik a prezentációs oktatási stratégia megújítása, a
tanórai interaktivitás növelése, az ellenőrzés-értékelés fejlesztése. Ugyanakkor az eredményesnek bizonyult tanítási/tanulási módszerek (pl. magyarázat, problémamegoldó előadás, esetlemezés) megőrzését is elősegítheti az elektronikus osztálytermi tábla használata. Az oktatás interaktív szakaszában a tanár kapacitása a tanulói célcsoportokhoz való adaptációhoz, a mikroszintű differenciáláshoz, a változatos kompetenciafejlesztő módszerek alkalmazásához felszabadulnak. Jellegéből adódóan az interaktív tábla előnyeit elsősorban a módszerekben gazdag csoportos jelenléti és a hálózati kollaboratív oktatásban tudjuk érvényesíteni. Az interaktív tábla használat ösztönzi a sokoldalú tanóratervezetést, a médiumok funkcionális használatát, a prezentáció önértékelése folytán (reflektív döntések) annak továbbfejlesztését. Az interaktív tábla használatának egyik legfontosabb értéke tehát, hogy a tanári tervező munka minőségét fejleszti.

Egy másik igen fontos értéke viszont flexibilitásából adódik, tehát a megtervezett tartalmak változtatható alkalmazása és a gyors konfigurálhatóság lehetősége, ami egy adott szituációhoz való adaptációit tesz lehetővé gyorsan és dinamikusan.

A harmadik igen egyedi értéke pedig abból származik, hogy lehetővé teszi digitálisan manipulatív szituációk felállítását (akár beépített funkcionálisita révén, vagy megfelelő alkalmazások futtatásával), így kollaboratív kísérletezésekre alkalmas terepek hozhatók létre.

2.1.1.1 Az interaktív tábla hatékony használatának feltételei

Az interaktív tábla használata számtalan lehetőséget kínál pedagógiai kultúránk megújítására, színesítésére. Ne feledjük azonban, hogy a cél nem a rendelkezésre álló eszközök használata, hanem a tanítás-tanulás folyamatába való funkcionális beépítése, a minél sokoldalúbb megközelítés, a különböző képességek és készségek fejlesztése, az alkalmazásképes tudáshoz juttatás az IKT segítségével.

- Interaktív táblánk használata akkor lesz hatékony, ha: biztosítjuk a szükséges időbefektetést a tanárok részére, hogy magabiztosan tudják használni az interaktív táblát, és különféle digitális forrásanyagokat tudjanak gyűjteni/adaptálni/kidolgozni munkájukhoz; rendelkezésre álljanak megfelelő tartalmak az órák széleskörű lefedéséhez, amelyek között minél több dinamikus tartalom is legyen órai kollaboratív kísérletek felállítására a tanulók aktív bevonásával; lehetőséget adunk tanárainknak az új tanaszközök megismerésére, gyakorlatban való kipróbálására, tanárok és diákok egyaránt használják, használatát részletes és pontos felkészülés, továbbá gondos tervezés előzi meg; a tábla hatásosan segíti a feladatokra való összpontosítást az osztályteremben, ugyanakkor megfelelő sebességet biztosít a tanításban, amit úgy biztosíthatunk, hogy az összes tananyagot már az óra előtt előkészítjük és közvetlenül elérhetővé tesszük;
A 21. SZÁZAD ISKOLÁJA

- megbizható, megfelelően kialakított és karbantartott technikai háttér áll rendelkezésre és eszközöink elhelyezése a tanteremben nem gátolja a szabad mozgást, valamint jól szervezett és nagy megbizthatóságú technikai támogatás áll rendelkezésre, hogy a felmerülő problémákat a lehető leggyorsabban meg lehessen oldani;
- a tábla használatához a segédeszközök (digitális fényképezőgép, digitális kamera, szkenner, dokumentum kamera, szoftver eszközök stb.) széles skálájának igénybevételét is biztosítjuk/ősztönözzük, amelyek segítségével elkészített tananyagainkat folyamatosan továbbfejleszthetjük;
- a helyes prezentációkészítési szabályok megismerésével és következetes alkalmazásával jó minőségű, motíváló hatású, dinamikus prezentációkat tartunk, amely hozzájárul: a különböző ismeretanyagok, (elvont gondolatok és fogalmak) vagy megoldási alternatívák bemutatásához; a tanulók érdeklődésének felkeltéséhez; a fogalom és fogalomrendszer alkotásához, a gondolkodás fejlesztéséhez, illetve a tevékenység elsajátításához; gyakorlati alkalmazási lehetőségek feltárásához; a tanult jelenségek szemléletes rendszerezéséhez; a tanultak változatos feltételek közötti alkalmazásához, amelyek elősegítik a megértés/tapasztalatszerzés folyamatát;
- szimmetrikusabb tanári-tanulói tevékenység és kommunikáció tervezésével biztosítani kell, hogy diákok interakciója lépjenek egymással, továbbá interaktív módon használják a multimédiás/hipermédiás tananyagokat;
- az interaktív táblák körültekintő használatával, és az órai feladatok, kérdések elmentésével hatékonyan alkalmazható foglalkozásgyűjteményre is szert teszünk, így az interaktív tábla használatára alapozott órákat újra lehet hasznosítani és ezzel a későbbiekben jelentős időt tudunk megtakarítani;
- a tanárok megosztják ötleteiket és erőforrásaitak egymás között, illetve partner-ségben, projektekben, szakmai-csoportokban együttműködő kollégáikkal (legalább az iskolán belül – optimális esetben több iskola között is – az elkészült tananyagelemek megosztása nagyon fontos, így a szerkeszthetőség elengedhetetlen).

Az interaktív tábla használatának tervezése nagyrészt döntési, azaz választási folyamat, amely arra is utal, hogy döntéseink során alternatívákon kell gondolkodnunk, s a valós alternatív megoldások közül kell kiválasztanunk a legmegfelelőbbet. A tervezés során hozott döntések nagyon fontos sajátossága, hogy ezek meghozatalára hosszabb idő áll rendelkezésre, így lehetőség van az események tudatos végiggondolására, a megoldások várható eredményességének becslésére. Minél alaposabb ez az elmékelőd felkészülés, annál jobban csökkenthető az oktatás interakciós szakaszában megjelenő váratlan események és körülmények mennyisége és az ott hozott azonnali döntések bizonytalansága.
A tanár egyéni tervező munkájához az alábbi szempontokat ajánljuk:

1. A tananyagegység elsajátítása során elérendő konkrét célok meghatározása egyrészt a tantervi programban kitűzött célokból való válogatással, másrészt a tananyag konkrét lehetőségeinek feltárásával, továbbá a tanítani kívánt célcsoport érdeklődésének, képességeinek, előzetes tudásszintjének figyelme vételével.

2. **Fogalmi elemzés és logikai elemzés**: Ennek során azt vizsgáljuk meg, mi- leny új fogalmak és összefüggések találhatóak az új anyag részben, ezek hogyan kapcsolódnak egymáshoz, a már tanultakhoz és a későbbiekben sorra kerülőkhöz. A fogalmak szemléletes, sokoldalú bemutatásával, változatos alkalmazásával, biztonsággal kezelt fogalomrendszer-használatot alapozunk meg a tanulók számára. Gnoszeológiai szempontok szerint átgon- dolandó az is, hogy milyen oktatási stratégia megvalósítása jelent optimális feldolgozást.

3. **Psichológiai elemzés**: Az anyag érdekkességének mértéke alapján a tanár megtervezi a motiválás módozatait, az anyag nehézségi fokának és a tanulók fejlettségi szintjének összevetésével pedig a differenciálás és individualizálás különböző formáit. A pszichológiai elemzés során fogalmazza meg a problémaszituációk különböző lehetséges típusait, a problémaszituáció megteremtésének módszereit. Így az interaktív tábla használata a tanulási szükségletek formálásához is hozzájárul.

4. **Neveléstäni szempontú elemzés**: A tananyag elemzése ebben a fázisban úgy történik, hogy az oktató megkeresi azokat a személyiségfejlesztést, magatartásformálást segítő lehetőségeket, amelyeket az adott tartalom és feladatrendszer feldolgozása során ki tud majd használni. Értékközvetítő hatásrendszer, feladatrendszer és kommunikációs kapcsolatok kerülnek megtervezésre. A pedagógiaiág tudatosan tervezett hatásrendszer ezáltal alapvetően járul hozzá a (szakmai) személyiség fejlesztéséhez.

5. **Didaktikai/ metodológiai elemzés**: A tanár végül meghatározza az oktatás stratégiáját a didaktikai feladatok körét, az oktatási folyamat konkrét struktúráját, az oktatás szervezési módját, módszereit, eszközeit és a téma lezárását követő ellenőrzés-értekelés konkrét kérdéseit, feladatait. Ez által az oktatás mikrostruktúrája is részletesen megtervezésre kerül.

2.1.1.2 Az interaktív tábla használata során elkövetett hibák

- Az interaktív audiovizuális taneszközök biztosította újserű és szinte korlátlan lehetőségek azt a veszélyt hordozzák, hogy a tanár elveszíti kötelező megfontoltságát, tudatosságát a technológia használatában. Az Interneten napjainkban nagy mennyiségű tanításra-tanulásra alkalmas tartalom található, ugyanakkor néhány funkcionálisan jól alkalmazható programmal is viszonylag egyszerűen előállítható célirányos és látványos tananyag– azaz a bőség zavarával állunk szemben. Adott esetben a többféle felhasználható forrást dolgozzuk fel, és készítsünk a korábbiaknál hatékonyabb saját anyagot tanítványaink oktatásához.

- Rendszerint mindent be akarunk mutatni, és lehetőleg sokoldalúan, ezért az elérendő pedagógiai cél folyamatos szem előtt tartása elengedhetetlen. Az érdeklődést keltő, színes bemutatás során ne vesszünk el a részletekben. Törekedjünk kiválasztani a számunkra és a tanulók számára lényeges gondolatokat, és csak azokat az anyagokat használjuk fel, amelyek megfelelnek ennek a kritériumnak.

- Miután elkészültünk a tananyagunkkal, prezentációinkkal feltétlenül próbáljuk ki azt – és mérjük be a felhasznált időt. Ne fussunk ki a tervezett tanítási időből! Az így tervezett órák rászoktathatnak a feszesebb időgazdálkodásra. A felszabaduló tanítási időt kompenzációs célokra, kiegészítő és érdeklődés szerinti tananyagok feldolgozására tudjuk majd fordítani.

- Az interaktív táblás óratervezés során a leggyakrabban elkövethető hiba a célkitűzéseknek nem megfelelő tananyagelemek alkalmazása. Ezt a hibát azonban kiküszöböljük – a tananyagelemek tesztelésével. Ha azt tapasztaljuk, hogy a tananyag nem úgy működik, ahogy azt elvártuk, feltétlenül változtassunk! A látványos megoldásokra törekvés ne menjen a használhatóság rovására!

- A funkció nélküli, gyakran alkalmazott eszközök elveszítik vonzó hatásukat, hatékonyságukat. A pedagógus igazi lehetősége és tudása a módszertani gazdagságban és a módszerek célján megfelelő variálásában van. Nem csak az érteleme, de az érzelmekre is képeseknek kell lennünk hatni.

- Ha a bemutatott példaanyag bonyolult, az nem segíti a megértést, ezért gondosan válasszuk meg példánkat. Azok legyenek lényegi, reprezentáns példák. Hasonlóképpen a feladatok ugyancsak igazodjanak a tanulók előzetes ismereteihez, illetve fokozatosan épüljenek egymásra. A túl bonyolult példaanyag újabb magyarázatokat fog igényelni.
Ne feledkezzünk meg a tanultak ellenőrzéséről- értékeléséről sem, hiszen a gyakori formáló, diagnosztikus értékelés (a válaszadó rendszer használata-val) a egyes tanulók és tanulócsoportok tanulási teljesítményeiről és a kompenzálandó problémákról időbeni információkat nyújt. A feldolgozott tudástartalomtól, annak szintjétől ne szakadjon el a számonkérés.

Az órai munka tartalma és jellege nagyban eltér az egyéni és otthoni munkában használt tartalmaktól és technológiától. Érdemes házi feladatként az órán bemutatott tananyaghoz illeszkedő, egyénre szabható konstruktív feladatokat is kiadni, hogy az órán tapasztalt ismereteket tovább mélyíthessék a tanulók hasonló tananyagelemek felhasználásával.

A tanítási-tanulási környezet átalakításával, a preferált médiahasználat megváltoztatásával, a tanulás központú módszerek felhasználásával, az interaktív oktatásszervezéssel, az értékelési formák sokféle alkalmazásával saját tanításra vonatkozó szemléletmódunk is átalakul. Ezzel együtt a teljes oktatástechnológiai folyamat innovációja valósulhat meg az iskolában.

2.1.2 Szavazórendszer

A tanítási és tanulási folyamat egyik legfontosabb eleme a minél gyorsabb és pontosabb visszacsatolás. A tanárok számos módszert alkalmaznak annak érdekében, hogy különféle információkat gyűjtsenek a diákokról (témazáró dolgozat, röpdolgozat, feleltetés, a tananyagra és a tanulási-tanítási folyamatra vonatkozó órai kérdések, a diákok testbeszédéből eredő információgyűjtés stb.), majd a gyűjtött információkat a hatékonyság növelése érdekében visszacsatolják a tanítás folyamatába (Kelemen, 2007). Azonnali visszacsatolást tesz lehetővé a szavazórendszer alkalmazása, aminek segítségével új lehetőségek nyilnak a tanórai értékelésben (Molnár, 2007).

Kézfeltartás helyett a szavazórendszer alkalmazásával biztosabb és pontosabb információt kaphatunk a diákokról, hiszen itt nem lehet bevetni az ismert trükköket (például jelentkezem akkor is, ha nem tudom, mert akkor nem szólítanak fel), illetve minden egyes diák aktiv részese az órának. A kérdés feltevése és a válaszidő lejártán az osztályra vonatkozó eredmények megjelennek egy grafikonon. Így késleltetés – mint például röpdolgozat esetében – nélkül pontosabb képet kaphat a tanár az adott ismeret elsajátítási szintjéről, nem kell kijavítania egy röpdolgozatot ahhoz, hogy információhoz jusson. Mind diákok, mind kérdések szintjén egy-egy háttértáblázatot generál a program, így később osztály-, diák- és kérdésszinten is elemezhető, értékelhető az órai munka, a sikeres vála-
szok száma, illetve elemzéseket végezhetünk a gyakori helytelen válaszok okainak feltárása érdekében. Az értékelések, válaszok kinyomthatók, különböző fájl formátumban (rendszerűtől függően - pl.: pdf, xml, xls, doc) elmenthetők, exportálhatók, vagy megőrizhetők a program adatbázisában. A korábbi válaszadásokat automatikusan elmenti a program, azok bármikor visszakereshetők és az adatokkal elvégezhetők a szükséges műveletek (27. ábra).

Számos rendszer érhető el a piacon, ezek főbb tulajdonságaira a fejezet későbbi részében térünk ki.

27.ábra: A korábbi események gyűjteménye
(Az adott eseményre rákattintva hozzáférhetünk a részletes adatbázishoz)

A 30.-31. ábrák olyan grafikonokat és táblázatot szemléltetnek, amelyeket a program az egyes diákok, az osztály, illetve a kérdések szintjén generál.

28.ábra: A kérdésre adott válaszok alapján generált osztályszintű grafikon
(A kérdés: Hány megye van az országban? A: 18, B: 19, C: 20, D: 21)
A lehetőségek köre a szavazórendszer típusától és szoftverétől függően változik, csakúgy, mint azon itemtípusok milyensége, mennyisége, amit kezelni tud a rendszer. A szavazórendszerek, felettő rendszerek (pl.: Interwrite Cricket, Interwrite PRS, Smart senteo, Ameg, VerdiICT, Hypermaster, Promethean ACTIVote, Qwizdom, Sahara CleverClick, Mimio Optivote; elérhetőségük az irodalomjegyzékben megtalálható) körében különböző típusú rendszereket különböztethetünk meg. Vannak az interaktív tábla típusától független és márkákhoz kapcsolódó szavazórendszerek, sőt olyanok is, amelyekhez nem szükséges interaktív tábla, csak egy számítógép és egy projektor, ami kivéti az eredményeket.

Egy táblafüggetlen rendszer használata nem igényel interaktív táblát. A szavazórendszerek szoftverei bármely számítógépré telepíthetők, majd a számítógéphez csatlakoztatott jeladó segítségével történik a kommunikáció (jelvezés, esetleg jeladás) a klikkerek és a számítógép között.

29.ábra: A kérdésre adott válaszok alapján a diákok szintjén generált táblázat
(A kérdés: Hány megye van az országban? A: 18, B: 19, C: 20, D: 21)

30.ábra: Személyre szabott eredmény
(A kérdés: Hány megye van az országban? A: 18, B: 19, C: 20, D: 21)
A rendszerek közötti másik jelentős különbség a klikkerek, azaz a szavazó eszközök fejlődésében van. Számos olyan rendszer kapható, amelyek csak zárt kérdések megválaszolására alkalmasak. Ezek kezelése általában jóval egyszerűbb, hiszen csak néhány gomb található rajtuk. Ezek a rendszerek hatékonyan és egyszerűen alkalmazhatóak a kisiskolások körében.

A bonyolultabb klikkereken esetleg már LCD-kijelző is van. Ezek adásra és vétele is alkalmasak. Különböző típusú egyszerűbb és bonyolultabb klikkereket ábrázol a 30. ábra. A szavazóeszközök legfejlettebb változatai az érintőképernyős eszközök, amelyek esetleg külön számlítógépként is funkcionálnak.

Az LCD-kijelzés eszközök általában bármely típusú kérdés megválaszolására alkalmasak. Kapható olyan klikker, amelyen külön gombokat találhatunk az igaz-hamis (T, F), a többszörös választásos (A, B, C, D, E; vagy 0-9-ig) feladatokhoz, előzetesen definiálható a helyes válaszok száma, tehát több helyes választ is meg lehet jelölni. A nyitott kérdések megválaszolására a mobiltelefon sms-funkciójához hasonlóan szöveg is beviteléhez, igaz ugyan, hogy egyelőre csak a sajátos magyar karakterek nélkül. A számok vagy a betűk használatával oldhatók meg a sorba állításos, illetve a helyes választ nem tartalmazó, attitűd jellegű kérdések is, például egy-egy fontossági sorrend felállítása így lehetséges. A kérdések szerkesztése során előre meghatározható, hogy hányszor próbálkozhat a diákkal.
A készülékek a számítógéphez csatlakoztatható egységgel kommunikálnak, ami a kijelzővel rendelkező rendszer esetében kétirányú kapcsolatot jelent. A tanár a kérdések szerkesztése során kérheti, hogy a rendszer küldjön közvetlen visszacsatolást a diáknak arról, hogy elküldött válasza helyes-e.

A szavazórendszerek használata egyszerű és előre tervezhető. A tanárnak előzetesen fel kell telepítenie a szavazórendszer szoftverét arra a számítógépre, ahol dolgozik, és regisztrálnia kell a klikkereket. A táblafüggetlen rendszerek többsége beépül a PowerPointba is, azaz elegendő, ha egyszerű PowerPoint diákra írjuk a kérdéseket és a válaszlehetőségeket, majd a háttérben definiáljuk a kérdés típusát, az érte kapható pontok számát, a helyes választ, ha van olyan. (Az attitűdjellegű kérdések esetén, például a tantárgyak rangsorolásánál nincs helyes választ.) Ezután beállíthatjuk a válaszadási rendelkezésre álló időt stb. és a rendszer máris használható.

A szavazórendszer tehát megvalósítja az azonnali visszacsatolás lehetőségét, alkalmazható mind diagnosztikus, mind formatív, mind szummátor-mérés-értékelés esetében. Használható az óra elején a házi feladat eredményének vagy megletének ellenőrzésére, az óra, a tanulási folyamat közben egy-egy gyors kérdés megválaszolására, az óra végén esetleg néhány ismétlő, összefoglaló kérdés erejéig. Az adatok közvetlen bevitele kiküszöböli a tévesztést, az eredmények rögzítése azonnal megtörténik, ezért az szavazórendszer segítségével végzett felmérés esetében nincs javítási idő, az eredményt rögtön megtudhatja mind a diák, mind a tanár. A rendszer hátránya az, hogy elég drága, egy osztály felszerelése körülbelül megegyezik egy interaktív tábla árával.

2.1.3 Oktatási célú projektorok

Az oktatási intézmények általában speciális igényekkel lépnek fel a projektorok használatát tekintve. Fontos a jó képminőség, amely kíméli a gyerekeket és a pedagógusok szemét, valamint a tartósság, megbízhatóság és a költséghatékonyság. Áttekintésünk kiterjed a projektor és tartozékai, továbbá a vetítő ernyők legfontosabb kiválasztási szempontjaira, és az üzemeltetés során cél szerűen követendő szabályok bemutatására.

2.1.3.1 Projektor típusok és alapvető katalógus adataik értelmezése kiválasztáshoz

A leggyakrabban használatos projektor típusok a folyadékkrystályos panel(ek)ből felépülő (LCD, liquid crystal display) és a mikrotükrös (DLP, digital light processing), továbbá az LCOS (Liquid Cristal on Silicon) projektorok.

A DLP technológia nagy fényerejű képet képes előállítani, vele a tökéletes fekete szin előállítása is megvalósítható. Hátránya, hogy a vetített képen észrevehető az ún. szívárvány-effektus.

LCOS: (Liquid Cristal on Silicon) A DLP működési elvéhez hasonlóan működik, de LCD technológiát alkalmaz. Ez esetben az ún. „billegő tükrök” helyett egy tükröződő hordozóréteg előtt folyadékkristály réteg zárja vagy nyitja a fény útját. Csak a visszaverődő fény jut az optikába. Az áramkörök felületére vetítve a nagy fényerejű izzólámpa alapszíneire bontott fehér fény. Ez a technológia igen nagy felbontású, nagy fényerejű és kiváló kontrasztú képet nyújt.

2.1.3.2 A projektorok helyes kiválasztásához, műszaki adataik értelmezéséhez kapcsolódó fontosabb fogalmak

A fényerő megválasztása: A projektor által kibocsátott fényáramot ANSI Lumen-ben mérík. Enyhén elsötétített helyiségben (irodák, kisebb iskolai tárgyalók) legalább 1000 ANSI Lumen szükséges. Nagymeretű képhez vagy teljesen megvilágított szobában 1500 ANSI Lumen vagy még ennél is több fényre van szükség (ez ajánlott az átlagos megvilágítású tantermekbe). A szükséges fényerő megválasztásánál figyelembe kell venni a helyiség megvilágítása mellett a vetített kép nagyságát és a vetítőfelület fényvisszaverő képességét is. Tantermeknél 2000 ANSI lumen körüli, auditóriumoknál pedig 4000 ANSI lumen fölötti projektor beszerzése javasolt.

Előnyösek az olyan projektorok, amelyek, ún. „eko” üzemállapottal is rendelkeznek, azaz ahol a fényerőt egy nagyobb és egy kisebb fényerő között a környezeti viszonyoktól függően lehet működtetni. (Ez növeli a projektor izzók élettartamát, és ugyanakkor kisebb környezetériselést jelent a tanulók és a tanár szemére is.)

A felbontásra vonatkozó elvárás: A felbontás a vízszintes sort alkotó pixelek il. a sorok számát jelöli. A nagyobb felbontás élesebb képet eredményez. A projektor ún. saját (native) felbontása a képkockas eszköz saját felbontására vonatkozik, nem pedig a fogadni képes jelnek a felbontása. Ha az utóbbiből, akkor a fogadott jelet a készülék saját felbontására fogja konvertálni. Az ún. XGA felbontású projektorok a képet 1024 * 768 képpontra (pixelre) bontják fel. Az megegyezik a legtöbb napjaikban használt számítógép monitor felbontásával, így a legjobb vetített képminőség eléréséhez a vetítés alatt igazítsuk számítógépünk felbontását ehhez a képfelbontáshoz. Ez az iskolai szemléltetési céloknak, már rendszerint megfelelő homogén, éles képet biztosít.

Trapéz korrekción: Ha a projektor által vetített kép síkja nem azonos a vetítővászon síkjával úgynevezett trapéztorzítás lép fel (függőleges trapéztorzításnál a kép oldalsó élei nem lesznek párhuzamosak és alsó, ill. felső élei nem azonos szélességűek – a kép szét- vagy összetart az alja vagy teteje felé). Trapézkorrekció segítségével – többnyire elektronikus képmanipuláció révén - ez a képborítulás kijavítható.

Zajszint: Decibelben (dB) mért zajszint (tipikusan 20-40 dB közötti), melyet a projektor hűtőventilátora okoz. Minél kisebb ez az érték, annál csendesebb a projektor. A projektorok izózi nagyon érzékenyek a megfelelő hűtésre, ezért használatot követően ne kapcsoljuk ki a projektor hűtőrendszerét, mert az izó élettartamát ezzel drasztikusan csökkentjük. Ennek megakadályozására szolgál az ún. „Stand by” üzemmódú gomb a készülékeken: ilyenkor a projektor izót lekapcsolódik, de a hűtőventilátor tovább működik az előírt hőmérsékletre történő lehűlésig. (A „gyors kikapcsolás veszélye” a hordozható projektorok esetén a legnagyobb, a tanórák közötti áttelepítés során.)

Izzó élettartam: Az izzlámpa élettartamát a maximális fényerőn történő üzemeltetésre adják meg a gyártók (tipikus a 2000 óra). A modern projektorok egy részében lehetőség van a fényerő csökkenésével járó üzemmód szerinti állapotot választani, mely lényegesen hosszabb izzó élettartamot eredményez. A legtöbb típus biztosítja az üzemmóra használat mérését/ kijelzését, így időben gondoskodhatunk a költséges izzócseréről.

A projektor súlya: A hordozható, illetve az interaktív táblákhoz alkalmazott projektorok súlya 1–5 kg között változik a telepítési konstrukció szerint. (A legkorszerűbb hordozható típusok között ma már az 1 kg alatti tömegük is megtalálhatók.) Ugyanakkor a stabilan függesztett (telepített) projektorok tömege jelentős lehet, ezért a balesetveszély megelőzése érdekében a konkrét telepítési (felfüggesztési) előírásokat feltétdamul tartsuk be.

A megjelenítés méretarány: A képernyő formátum a megjelenített kép szélességének és magasságának arányát jelzi. Bár szinte minden projektor alkalmazás számítógépes és videó/DVD anyagok vetítésére, azért ritka az olyan típus, amelyik mindkettőre egyformán jól használható. Döntenünk kell arról, hogy milyen forrásról szeretnénk meghajtani az új eszközünket. Amennyiben számítógép a jelforrás,
akkor maradhatunk a hagyományos, 4:3 aránynál. Ez a képarány a szabványos VGA, SVGA, XGA, SXGA, ill. UXGA felbontású számítógépes képeknek. (Ha szélesvásznú filmet vagy HDTV anyagokat nagyobb gyakorisággal akarunk vetíteni, akkor 16:9 arányú megjelenítésre képes projektor kell választanunk.)

Vetítő ernyő felületének minősége: Minden szövetfajtának saját ismertetőjegyei, túlajdonságai vannak. A helyes kiválasztás – ami a legjobb képet eredményez – a környezeti tényezők ismeretében végezhető el. (A szövetfajták típusát, fényerő-sítési és látószög jellemezőit katalógusból választhatjuk meg. A fényerősítési értékek a fehér fal 1,0 alapértékéhez viszonyított arányszámok. A látószög az a szögtartomány, ahol a visszavert kép még legalább olyan fényes, mint a fehér falról visszavert.)

2.1.3.3 Projektorok funkcionális használata szerinti kiválasztása

Aszerint, hogy hol kívánjuk felhasználni a projektorat, az alábbi projektor kategóriákból választhatunk:

Általános célú prezentációs projektorok: a gyártóknál a belépő szintű projektorokat jelentik, amelyek alapfunkcióikban kielégítik a felhasználók igényeit, megbízható működésükkel hosszú távon szolgálják a felhasználókat. Kedvező árúak, fényerősségükkel általában bármely viszonylag elsötétíthető helyiségben élvezhető minőségű prezentáció bemutatására alkalmasak.

Oktatási célú projektorok: a jó minőségű, több forrásból származó képi, videó és film anyagok vetítésére alkalmasak. A tanárok és gyermekek számára különböző, kedvező árban, stabil és megbízható üzemmódú projektorok szerepelnek ebben a kategóriában. A legtöbb esetben fix telepítésűek, de egyre szélesebb körben terjednek a vezeték nélküli megoldások is.

Hordozható projektorok: speciális felhasználásra tervezett vetítők, amelyek legfőbb üzemeltetési szempontja a tökéletes képminőség mellett a kis tömeg és zajszint. A kis tömeg azért szükséges, hogy könnyen hordozható legyen, a kis zajszint pedig azért, hogy ne zavarja prezentáció közben a közel lévő résztvevőket. Tipikusan magasabb árúak az ár szerinti kategóriájuk is. (Olyan megoldás is lehetséges, hogy külön projektor legyen a projekt során, és külön jár hozzáférést a projektorhoz.)

Installációs projektorok: Általában auditóriumban, konferenciatermekben használják, extrém magas fénnyerővel rendelkeznek, átlagosnál magasabb felbontással. Élettartam szempontjából tartósak. Árak magasak, de professzionális vetítési lehetőségeket biztosítanak.
2.1.3.4 Az üzemeltetési körülmények szerepe a projektor használatában

A helyiség megvilágítása, árnyékolása, sötétítése: Azt, hogy milyen fényerejű vetítőt válasszunk, alapvetően az a környezet szabja meg, hogy milyen megvilágítású helyiségben és milyen célra kívánjuk a projektort használni. Ha a projektort osztályteremben használjuk, jelentős gondot okozhat a munka-ergonómiai szempontból egyébként feltétlenül szükséges jó megvilágítás és a környezeti fény. Erősen zavaró lehet továbbá, ha a terem tájolása folytán még a közvetlen napsütés fényével is számolnunk kell. Ilyen esetekben sötétítő, vagy árnyékoló rendszer felszerelése feltétlenül szükséges az élvezhető minőségű vetítéshez.

Projektor hűtése: A projectorventilátorok működésük közben hűtő levegőt szívnek be a környezetükből. Bármelyik speciális porszűrővel vannak ellátva, ezek hosszú távon rendszerint nem képesek a nagyobb porterhelést kiszűrni, ezért a szűrők tisztítása nagy figyelmet kell fordítani. (Porosabb környezetű helyiségekben inkább a DLP-technológiájú készülékeket érdemes telepíteni, mert az LCD-technológiájúak fényárama akár néhány hónap alatt a felére csökkenhet.)

A mobil használatú projektorokat mindenféle esetben zárjuk el a használat után.

Fixen telepített projektorok esetében költségkimélő, egyszerű megoldást jelentenek lopás- és megrongálás ellen a biztonsági védő dobozok. Auditóriumok értékes projektorait azonban már érdemes bekötni az intézmény biztonsági riasztórendszerébe is. (Az optimális megoldás kiválasztásához kérje referenciákkal rendelkező vetítéstechnikai cégek tanácsát.)

A projektor fixen kábelezett telepítése vagy mobil elérése: A fixen szerelt projektort a legtöbb esetben a vetítőernyőtől, táblától megfelelő távolságra, a mennyezetre vagy oldal falra szerelik egy projektor tartó konzolra.

Korszerű, innovatív oktatástechnikai megoldásokat nyújthat, ha vezeték nélküli interaktív taneszközökhez vezeték nélküli projektort választunk. Érdemes végiggondolni azokat a pedagógiai és oktatástechnológiai lehetőségeket, amelyeket a modern vezeték nélküli projektorok nyújthatnak. A több pontról, több számítógépről elérhető kivetítés (egyes típusok ma már 16 notebook számítógép képernyő tartalmát is képesek megjeleníteni), továbbá a képernyő megosztás használata újszerű lehetőségeket nyújt a csoportmunka eredmények kivetítésében.

2.1.3.5 Vetítővásznak kiválasztása

Telepített projektorokhoz fali felfüggesztésű vásznat ajánlatos használni, míg a hordozható projektorokhoz a hordozható vásznak az ajánlottak. Napjainkban a projektorok magas fényerejére miatt már elegendő fehér, matt felületű vásznakat használni, amelyek a gyöngyvászon felületnél jóval nagyobb szögeből nyújtanak éles képet.

A vetítővászon típusának kiválasztása: Mobil prezentáció esetén a vászon szerkezetének erőssége, illetve súlya lehet a kiválasztás alapja. Állandó helyszínnél választathatunk kézi vagy motoros mozgatású vetítővásznat.

A vetítővászon méretének megválasztása: Az utolsó nézősor távolsága a vetítővászon-tól, ne legyen távolabb – ajánlások szerint – a kép magasságának hat szorosánál. Az első sor távolsága a vetítővászonhoz ne legyen közelebb a kép magasságának két szorosánál. Oktatási prezentációról megválasztásánál a vetítővászon alsó széle legyen a padló szintjétől minimum 120–150 cm-re, hogy az egymás mögött ülő tanulók ne takarják a képet.

A vetítővászon képaránya: A vetítési módozattól és a jelforráštól (számítógép, videó, DVD-lejátszó), függően a kivetített kép sajátos szélesség és magasság aránnyal rendelkezik. A leggyakoribb képformátumok a 4:3 (video formátum), illetve a 16:9 (széles vásznú filmek, DVD és HDTV használathoz).

A vetítővászon felülete, szövetfajtája, vastagsága: A vetítővászon felületét két főbb szempont alapján választhatjuk ki, a felület fénvyisszaverezi tulajdonságai és a vászon anyagminősége alapján. (Fixen telepített projektor esetében ajánlott az
ún. „Datalux”, míg állványos projektor esetén a „High power” felület választása a fényvisszaverődési jellemzők folytán.) Az oktatási célú vetítéseknél szokás ún. „fényvisszaverést erősítő vetítővásznakat” alkalmazni, de be kell tartani az előírt vetítési elrendezéseket is. Rolós vetítővásznak esetében a szövet vékony, hogy a visszacsévélő rugó ereje a szövet tömegét képes legyen felemelni, illetve ne akadályozza azt a váson meresvége. (A vékony szövet alkalmazásának gyakori következménye, hogy nem ad tőkéletesen sik vetítőfelületet.) Motoros hajtású vetítővásznaknál a felcsévélést és a leengedést beépített motor végzi, ezért lehetséges vastagabb szövet típus választása. Vetítési szempontból a feszített vetítővásznak adják a legtökélesebb felületet.

A projektoros vetítéstechnika optimális, biztonságos és költségkimelő intézményi kialakítása jelentős szakmai hozzáértést igényel, ezért ajánlott vetítéstechnikai szakember felkérése a jelentősebb fejlesztések kivitelezésekor.

A szélesebb körben alkalmazott notebookok mellett a tablet PC és az Ultra-mobile PC (UMPC) még több interaktivitást biztosít a tanteremben, és újradefiníálja, átalakítja a tanulás és tanítás lehetőségeit. A tanár az osztályteremben járkálva írhat az érintőképernyős számítógépek képernyőjére, amelynek képe a projektor közvetítésével – ha wireless üzemmódban is működő projektort használunk – azonnal megjelenik a táblán.

A tablet PC (34. ábra) egy kisméretű (átlagosan 1,5 kg súlyú és 12,1 colos kijelzővel rendelkező), digitalizálható képernyővel felszerelt notebook, amelyre a számítógéphez adott speciális, elektromágneses elven működő tollal lehet utasításokat adni. A toll helyettesíti az egeret, azaz minden olyan funkciót ismer, amit az eger. A tablet PC-re bármely asztali számítógépen futtatható program telepíthető. Képernyője ráfordítható a billentyűzetre, és mint egy kisebb méretű jegyzettűzetbe, úgy írhatunk a kijelzőre. A továbbiakban a teljesség igénye nélkül kiemelünk néhány hagyományos notebookoknál nem létező funkciót, miközben hangsúlyozzuk, hogy a notebookoknál elérhető összes funkció hozzáférhető a tablet PC-n is.

A tablet PC-n a billentyűk használata helyett kézzel – mint egy jegyzettűzetbe – is jegyzetelhetünk. Specifikus jegyzetelő program például a Windows Journal (Office XP része), illetve a OneNote (Office 2007 része). A beépített írásfelismerő prog-

A 21. SZÁZAD ISKOLÁJA

ramnak köszönhetően például az angol nyelvű jegyzeteinket átfordíthatjuk gépelt szövegre. Kereshetünk a kézzel írott jegyzeteinkben, csoportosíthatjuk, kiegészíthetjük, átalakíthatjuk azokat, mivel a digitális technológia lehetővé teszi, hogy újabb oldalakat, üres helyet szúrjunk be feljegyzéseinkbe. A billentyűzetettel való jegyzeteléssel szemben nagy előnye, hogy rajzokkal is kiegészíthetjük jegyzeteinket segédprogramok (Paint) alkalmazása nélkül. Ha egy művelet kapcsán gépelni szeretnénk a képernyő elforgatása nélkül (például mentésnél beírni a file nevét), a beépített virtuális billentyűzet segítségével is megtehetjük. A jegyzetelő program lehetővé teszi, hogy felvegyük a magyarázatot úgy, hogy azt a program szinkronizálja a jegyzetekekkel, azaz elegendő később csak arra a részre kattintani, amely nem világos a jegyzetben, és meg lehet hallgatni az azon a ponton elmondottakat.

A tablet PC iskolai alkalmazása nem újkeletű. Egyre növekszik azoknak az oktatási szoftvereknek a száma, amelyeket speciálisan tablet PC-re fejlesztettek. Az ingyenesen elérhető Education Pack mellett főképpen a mindennapi használatban, de az oktatásban is használható az Experience Pack és a Power Toys-ok (mindhárom programcsomagról részletesebben lásd MOLNÁR, 2007). Hatékonyságát bizonyítja, hogy Spanyolországban már évek óta több mint 20000 diák tanul könyvek és füzetek helyett tablet PC-vel, de Európa több országában is sikeresen alkalmazzák különböző tantárgyak tanításában (ITF, 2007).

Az Ultra-mobile PC (33. ábra) technológiájában annyiban különbözik a tablet PC-től, hogy képernyője érintőképernyő, azaz bármilyen hozzááértett eszközt érzékel. Ennek következtében nemcsak a hozzá tartozó műanyag tollal, de ujjal is adhatunk utasításokat a számítógépeink. A számítógép USB kimenetén keresztül csatlakoztathatunk hozzá billentyűzetet és egeret is, vagy a képernyőn megjeleníthető virtuális billentyűzet segítségével gépelhetünk. A tablet PC-re fejlesztett
összes specifikus program futtatható rajta, ezért ugyanolyan hatékonyággal alkalmazható jegyzetelésre, tanulásra, mint a tablet PC. Méretei az átlagos PC és tablet PC méreteinél is kisebbek (a 33. ábrán mutatott gép képernyójének átmérője 7 col, tömege 779 g).

A PDA és a Smart phone (PDA és a mobiltelefon ötvözete) iskolai alkalmazása hazánkban még gyerekcipőben jár. A PDA (Personal Digital Assistant), azaz digitális személyi asszisztens nem más, mint egy kisméretű, akár zsebben is elférő számítógép. Fő feladata az információk rögzítése, tarolása, kezelése és gyors visszakeresése, amit manapság az érintőképernyőn való műveletvégzés jelenlősen felgyorsít. Egy infravörös port vagy egy USB kábel segítségével könnyen csatlakoztatható más számítógéphez. Az internethez vezeték nélkül kapcsolódik.

A gépek közötti vezeték nélküli kommunikáció Bluetooth-on (kis hatótávolságú csatlakozási lehetőség) keresztül történik. A PDA-k az utóbbi néhány évben rohamos fejlődésen mentek és mennek át. Tudásban, funkcionalitásban egyre inkább hasonlítanak a notebookokra, amelyek viszont egyre kisebbek lesznek.

A világ azon országainak oktatásában (pl.: Japán, Hong Kong), ahol a gyerekek rendelkeznek mobil eszközökkel, illetve használatuk közel ingyenes, igyekeznek azokat az oktatás szolgáltatába állítani, mivel az iskola részéről plusz beruházást nem igényelnek, Európában is egyre több helyen (pl.: Anglia, Németország) használnak PDA-t az oktatásban. Számos kutatás fókuszál hatékonyságukra (pl.: CHURCHILL, 2007; ITF, 2007; ANDERSON és BLACKWOOD, 2004; Trinder, 2004). Az interneten is növekszik az érintőképernyős számítógépekra
A 21. század iskolája

fejlesztett, oktatási célú, letölthető programok, alkalmazások, segédanyagok száma(pl.: http://www.k12handhelds.com/). Iskolákban leggyakrabban a házi feladat beküldésére, projektekfeladatok során adatrögzítésre, helymeghatározásra, sebességmérésekre használják (ChURchill, 2007). Szavazórendszerrel összekötve alkalmas teszt és kérdőív kitöltésére, versenyeken pontozásra (Electronics Department InformationTechnology Branch, 2007), információkeresésre, információvásárlásra, egyszerű válaszadásra, visszajelzésre stb.

Classmate PC

Az Intel által fejlesztett classmate PC (CMPC) gépeit kifejezetten iskolai felhasználásra, oktatási célra fejlesztették ki, az elmúlt tanévben két fővárosi általános iskolában is ezek használatával tanultak a gyerekek. A CMPC elfér egy hátizsákban, viszonylag kis súlyú, sokkal jobban bírja a mindennapos strapát, ütődéseket, mint a hagyományos laptopok. Alkalmas vezeték nélküli internetkapcsolatra, fut rajta a Windows XP és egy testre szabott Linux is. Már elkészült a CMPC magyar verziója magyar nyelvű billentyűzettel és honosított szoftverekkel.

A közoktatásban használható elektronikus oktatási anyagok gazdag tárházát kínálja a www.skoool.com weboldal. Az ingyenesen, bárki számára elérhető és több nyelven hozzáférhető modulok sok tantárgy oktatásához nyújtanak segítséget. A rendszert folyamatosan fejlesztik, többek között olyan irányba, hogy a jövőben akár mobil kommunikációs eszközökkről – például telefonról is – is elérhető legyen a tartalom.

A CMPC használata során a tanár folyamatosan kapcsolatban áll a diákokkal, megoszthatja a saját képernyőjét a többi diákkal, vagy bármelyik tanuló képernyőjét a többiekkel, szemléltetve ezzel például a helyes feladatmegoldást. Igény szerint kisebb nagyobb csoportokat alakíthat a gyerekekből, és szükség esetén le is tilthatja a gépeket. Ki tud nekik küldeni anyagokat, amin aztán vagy a tanórán vagy házi feladatként dolgozhatnak. A tananyag számonkéresése is elektronikus úton történik, az eszköztár itt is sokrétű (feleletválasztós tesztek, esszé jellegű

35.ábra: Classmate PC
(http://www.intel.com/intel/worldahead/classmatepc/)
feladatok vagy ezek kombinációi). A diákok otthonról is kapcsolatba léphetnek a pedagógussal vagy társaikkal. A beépített tartalom-felügyeleti rendszer biztosítja, hogy a gyerekek ne férjenek hozzá bizonyos internetes tartalmakhoz. Az oktatási szoftver lopásgátlót is tartalmaz: ha a gépet bizonyos időközönként nem viszik be az iskolába – azaz nem lép kapcsolatba az ottani szerverrel –, akkor hardver szinten működésképtelenné válik, tehát az operációs rendszer újratelepítésével sem oldható fel annak zárolása.

36.ábra: a www.skool.com weboldal több nyelven is hozzáférhető.
2.2 Tanár-diák-szülő kapcsolat támogatása: az átlátható, kliens-központú iskola

2.2.1 Digitális napló

2.2.1.1 Miért legyen a napló digitális?

Ahogy a modern világ vívmányai megjelentek az iskola falai között, a tanárok egyre nagyobb számban kényszerültek rá arra, hogy ezeket az eszközöket alkalmazzák is a mindennapok oktatási gyakorlatában. Egyre több tanárkolléga használ már az elavult és az idők során egyre romló minőségű VHS videoszalagok helyett DVD-re rögzített anyagot, írászetű helyett számítógépről kivetíthető MS PowerPoint diákát. A kézzel, majd írógéppel előkészített tesztek nyomán megjelentek a szövegszerkesztett dolgozatok, kialakult a weben elküldendő házi feladatok, az e-mailben írt igazolások és intők fogalma. Egyre több tanuló készül fel kiselőadásaira a könyvtár használata mellett – avagy leginkább már a helyett – az internet böngészésével.

Szinte törvényszerű volt, hogy előbb-utóbb megjelenik az igény a tanárok és az iskolavezetés részéről egy olyan eszközre, amelyik a tanári és azon belül az osztályfőnöki adminisztrációt teszi könnyebbé. A mindennapos iskolai kötelezettségek, a tananyagban való előrehaladás vezetése, a jegyek naprakész nyilvántartása, az egy napon íratható témazáró dolgozatok számának koordinálása eddig főleg a haladási és osztályozó napló feladata volt.

Kézenfekvő volt tehát e legfőbb iskolai dokumentum, a napló „digitalizálása”, azaz tartalmának elektronikus formába öntése.

Innen már csak egy lépés, hogy a hagyományos funkciókat olyan szolgáltatásokkal is bővítsék a szoftverek írói, amelyek a funkcionális elemek mellett vonzóbbá és könnyebben kezelhetővé teszik ennek a megújult eszköznek a napi használatát.
2.3 Pályázati lehetőségek

2.3.1 Miért pályázzunk?

A különböző fejlesztési folyamatok költségigényesen valósíthatók meg. Ezekhez általában nem állnak rendelkezésre források az iskolákban. Más lehetőségünk nincs, mint pályázatot írunk, amelyet, ha jól elkészítettünk és kiválasztották a benyújtó intézményt, akkor „kedvezményezett” válhatunk. A megadott határidőn belül, a benyújtott és elfogadott feladat- és költségtervet kivitelezve valósíthatjuk meg a fejlesztési feladatot, más szóval projektet. Gyakran használjuk ezt a kifejezést, de tekintsük át, mi is itt a projekt fogalma: Mindazon feladatok összesége, amelyek egyszeri, komplex tevékenységfolyamatok által megoldhatók, jól körülhatárolt cél érdekében, előre rögzített határidőre – meghatározott kezdési és befejezési időpont –, és teljesítménnyel, adott költségkereten belül. Érdemes alaposan, akár többször is elolvasni ezt a definíciót, hiszen minden egyes szókapcsolatnak nagyon nagy jelentősége van. Talán egy kicsivel egyszerűbben meghatározás az alábbi: „A projekt, egy nem megszokott, nem ismétlődő feladat, különálló időbeli, pénzügyi, és technikai megvalósítási célokkal.” (HARRISON, 1995)

2.3.2 Információk, pályázati felhívások

A Pályázati felhívás a nyilvánosság tájékoztatása a pályázati lehetőségről. Tekintsük át azokat a legfontosabb elemeket, amelyeket a pályázati felhívások tartalmazzák.

A pályázati felhívás hivatkozási száma és címe. Ez alapján tudjuk beazonosítani, hogy mely kiíró intézmény melyik pályázata után érdeklődünk, a későbbiekben milyen tájékoztató és pályázati formanyomtatványok beszerzésére, vagy internetről történő letöltésére lesz szükség, (pl. „A szak- és felnőttképzés struktúrájának átalakítása” konstrukció keretében a „TISZK rendszer továbbfejlesztése” című pályázati felhívása, kódszám: TÁMOP-2.2.3/07/1/KMR 1. forduló).
A 21. század iskolája

A program pénzügyi forrásai határozzák meg, hogy melyik szervezet, milyen módon biztosít támogatást a kedvezményezetteknek, azaz a majdani nyertes pályázóknak. Az iskolák esetében általában 100%-os támogatás várható, de ettől eltérő pályázatok is vannak, pl. az EU Leonardo da Vinci pályázata, csak maximum 75%-os támogatást nyújt, ami azt jelenti, hogy a hiányzó, legalább 25%-os költségeket saját forrásból kell biztosítani. A 100%-os támogatás is csak az iskolák számára nyújt teljes támogatást, hiszen az „Új Magyarország Fejlesztési Terv”-UMFT-, keretében meghirdetett pályázatokat az Európai Unió csak részben támogatja. A közintézmények esetében a hazai költségvetésből vagy egyéb alapokból, pl. Szakképzési Alap egészítik ki a hiányzó forrást a 100%-hoz.

Az előző példában bemutatott pályázati felhívás pénzügyi forrása az UMFT Társadalmi Megújulás Operatív Program, így minden egyes pályázati dokumentáció olvasható: „A projektek az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósulnak meg”

A tevékenységtípusok és projektidőtartam ismerete határozza meg, hogy milyen ötlettel, mennyi idejű tevékenységhez kaphatunk támogatást. A pályázat előkészítése során gyakran ad felértékeztésre okot, és akár már formai hiba miatti kizárást is eredményezhet, ha nem vagyunk tisztában, hogy milyen típusú tevékenységükhoz várunk támogatást. Ez lehet fejlesztés, pl. elektronikus tananyagfejlesztés, lehet „innováció transzfer”, amikor a külföldön már kifejlesztett megoldást szeretnénk itthon is hasznosítani, beruházás, diákcsere stb. A projektidőtartam általában 6-36 hónap között fordul elő a tevékenységtípustól és a rendelkezésre álló forrástól függően fejlesztési támogatásoknál, de a tanár- és diákcsereknél a néhány hetes kiutazásra is elnyerhető támogatás.

A rendelkezésre álló összeg megadásánál meghatározzák a teljes támogatási keretet. A támogatási összeghatárok ismerete két szempont miatt is fontos. Ez alapján tervezhető a teljes projektköltségvetés, illetve a rendelkezésre álló összeg és a támogatási összeghatárok alapján könnyen kiszámolható, hogy várhatóan hány sikeres pályázó kaphat támogatást, azaz milyen esélyeink vannak. A pályázatok összeállításánál figyelembe kell venni, hogy melyek az elszámolható költségek, és milyen hosszúságú az ún. projektidő. Mindkettőre a részletes pályázati útmutatóból kaphatunk magyarázatot.

A várt eredmények megfogalmazása segíti a projekttervezést illetve befolyásolja a döntéshozókat, hogy a benyújtott pályázatok mennyire felének meg ezeknek az elvárásoknak.

A támogatható pályázók körének ismerete azért fontos, mert ez alapján dönthetjük el, hogy egyáltalán benyújthatunk-e pályázati javaslatot, pl. a kisvállalkozók számára kiírt pályázatra nem adhat be iskola pályázatot, bár lehet, hogy a témakör számukra is nagyon kedvező lenne.
A pályázati formanyomtatványon adható be a pályázati javaslat. Ennek formája kötött, szerkezetét megváltoztatni nem szabad! Ma már csak szövegszerkesztővel készített, folyamatos oldalszámmal ellátott, bonthatatlan formában, fűzött vagy spirálozott, a pályázati felhívásban rögzített számú eredeti és másolt kinyomtatott példányokat, illetve mellékelt elektronikus adathordozókat kell benyújtani. Egyre gyakrabban fordul elő, hogy interneten keresztül – előzetes regisztrációt követően –, kell az elektronikus ürlapot kitölteni és azt esetleg kinyomtatva és aláírva is beküldeni. Nagyon fontos az aláíró személye, aki képviselheti az intézményt. Előfordulhat aláírási cimpéldány bekérése is. A cégszerű aláírás esetén, az igazgató mellett, a gazdasági vezetőnek is alá kell írni a dokumentumot.

Az elérhetőségek megadása a pályázat beadása miatt fontos, de az is előfordulhat, hogy telefonon, vagy személyesen is a pályázatot konzultációs lehetőséget biztosít a benyújtási határidő előtt. Néhány esetben arra is van mód, hogy a 7-14 nappal a benyújtási határidő előtt beadott pályázatot formailag értékeljék, és lehetőség nyilik a javításra a végleges határidő előtt.

A benyújtási határidő be nem tartása és nem megfelelő értelmezése kudarca lehet az egész pályázat előkészítési szakaszának! Mindig figyelmesen olvassuk el, hogy a megadott határidő a postára adás vagy a beérkezés időpontja. Mindkét eset előfordulhat, utóbbinál általában óra percet is megadnak! Azt is célszerű letisztázni, hogy személyesen benyújtható-e a pályázat, vagy csak elektronikusan, illetve postai úton adható fel.

Az eredményhirdetés várható időpontja inkább tájékoztató jellegű, ez alapján tudja a pályázó, hogy mikor számíthat a végeredményre, a pályázat támogatására vagy az elutasításra. Ez a pályázat előkészítésénél is fontos szempont, hiszen ez alapján – figyelembe véve a szerződéskötési időszakot is –, tervezhető az elvégzendő feladatok megkezdése.

◆ Aktuális pályázatok
 ○ Egész életen át tartó tanulási program
 ○ Comenius
 ○ Erasmus
 ○ Leonardo da Vinci
 ○ Grundtvig
Ezekenél a pályázatoknál minden esetben találunk részletes leírást a pályázat céljáról, a pályázók köréről, az aktuális pályázati felhívásoknál a pályázati útmutató és a letölthető űrlapok is adottak.

A Szociális és Munkaügyi Minisztérium – http://www.szmm.gov.hu/ – honlapján is találunk önálló Pályázatok menüpontot, ahol kigyzítve szerepelnek a Szakképzés és Felnőttképzés témaú pályázatok. Az ezen pályázatokhoz fűződő információkat az interneten található szakképzési és felnőttképzési intézetek honlapjain is nyújtják. A pályázatok című lapokban részletes leírást találunk a pályázati céljáról, a pályázók köréről és a pályázati felhívások útmutatójáról.

A Szociális és Munkaügyi Minisztérium – http://www.nzfi.gov.hu/ – honlapján is találunk önálló Pályázatok menüpontot, ahol kigyzítve szerepelnek a Szakképzés és Felnőttképzés témaú pályázatok. Az ezen pályázatokhoz fűződő információkat az interneten található szakképzési és felnőttképzési intézetek honlapjain is nyújtják. A pályázatok című lapokban részletes leírást találunk a pályázati céljáról, a pályázók köréről és a pályázati felhívások útmutatójáról.

A Szociális és Munkaügyi Minisztérium – http://www.szmm.gov.hu/ – honlapján is találunk önálló Pályázatok menüpontot, ahol kigyzítve szerepelnek a Szakképzés és Felnőttképzés témaú pályázatok. Az ezen pályázatokhoz fűződő információkat az interneten található szakképzési és felnőttképzési intézetek honlapjain is nyújtják. A pályázatok című lapokban részletes leírást találunk a pályázati céljáról, a pályázók köréről és a pályázati felhívások útmutatójáról.

A Szociális és Munkaügyi Minisztérium – http://www.szmm.gov.hu/ – honlapján is találunk önálló Pályázatok menüpontot, ahol kigyzítve szerepelnek a Szakképzés és Felnőttképzés témaú pályázatok. Az ezen pályázatokhoz fűződő információkat az interneten található szakképzési és felnőttképzési intézetek honlapjain is nyújtják. A pályázatok című lapokban részletes leírást találunk a pályázati céljáról, a pályázók köréről és a pályázati felhívások útmutatójáról.

2.3.3 Pályázatok előkészítése és írása

A pályázatok előkészítése során térjünk vissza a projekt általános ismérveihez:

- megvalósítandó céllal rendelkezik,
- projektterv alapján készül el,
- adott idő- és költségkerettel rendelkezik,
- költségterve projektidőre bontott,
- minőségi követelményekkel kell számolni,
- bizonytalansági tényezők, akadályok nehezítenek a megvalósulást,
- egyedi szervezeti forma, projekt-menedzsment csoport is megvalósíthatja a tervezett feladatokat.

A feladatok logikus és hatékony elvégzése, valamint az ellenőrzés megkönnyítése céljából a projekt tevékenységeit ütemezni kell, vagyis készíteni kell egy tevékenységi tervet, mely a tevékenységek sorrendjét és időtartamát tartalmazza. Miután a tevékenységeket megtervezték, meg kell határozni a tevékenységek elvégzéséhez szükséges fizikai, anyagi és pénzügyi erőforrásokat. Mivel a későbbiekben különböző szempontok szerint kell összevevő és összesíteni a költségeket, az erőforrásokat előre meghatározott költségkategóriák szerint kell felosztani. Ehhez általában a pályázati dokumentumokban találunk különböző Excel táblákat megfelelő struktúrával. A költségvetés kiegészítéseként szöveges magyarázatot is kérhet a pályázatot kiíró az egyes források tervezésének bemutatása érdekében, amellyel ellenőrizhető, hogy az elkészített költségvetés mennyire reális árakkal és költségekkel készült, illetve milyen kapcsolata van a projektcélokkal és az elvégzendő feladatokkal.

A feladatok megvalósításához időtervet kell készíteni, amely a projekt tevékenységeinek időbeli megvalósulását grafikailag ábrázoló terv. Időtervezési technikákkal szembeni követelmények:

Egyetemilegesség, az összes tevékenység és azok kapcsolatait, összefüggéseit képes lenyugrott elárazolni,
Rugalmasság, a jövőbeni változások átvételére alkalmas legyen,
Áttekinthetőség, a szükséges információk megjelenítésére legyen alkalmas,
Pontosság, jelenítse meg a megvalósítás realitását, legyen egyértelmű és megfelelően nyomon követhető.
Időtervezési szempontok:

- Tevékenység
 - két konkrétan meghatározott időpont között teljesítésre kerülő projektelem
 - teljesítése erőforrást igényel
 - helyszíne meghatározható
- Tevékenységek időtartama
 - adott tevékenység elvégzéséhez szükséges időmennyiség
 - befolyásolja a munkamennyiség, erőforrás mennyiség, erőforrások teljesítőképessége, külső korlátozó körülmények
- Tevékenységek logikai kapcsolata
 - párhuzamosan végezhető tevékenységek köre
 - egymás után végezhető tevékenységek

A mérföldkövek, olyan különleges jelentőségű események, amelyek a projekt előrehaladásában fontosak. A projektszakaszok "metszési pontjaival" is egybe eshetnek, ún. döntési pontok. A mérföldkövek jellemzői, hogy nincs időtartamuk, fontos határpontokat jelölnek, segítenek a megvalósulás nyomon követésében és a közbenső eredmények értékelésében.

A legelterjedtebb időtervezési technika a Gantt-diagram alkalmazása.
Általános jellemzői:
- szalagdiagram,
- legrégibb tervezési technika,
- elkészítése és értelmezése könnyű,
- azonnal igazítható a tervezési követelmények széles változataihoz,
- tevékenységek a bal oldalon, tevékenységek időtartama a vízszintes szalagon található,
- jól látható a párhuzamosan végezhető tevékenységek köre.

A jól előkészített projekt isméri:
- releváns,
- valós igényre alapul,
- célorientált,
- a kiírásnak megfelel,
- megvalósítható,
- jól átgondolt, következetes,
- eredményei mérhetők,
- reális költségvetéssel rendelkezik,
- világos a munkamegosztás,
- előzetesen felmért kockázatokat tartalmazza,
- fenntartható,
- a célcsoport számára nyújtott előnyök a fejlesztés után is biztosíthatók.

2.3.4 Pályázatok megvalósítása és a monitoring szerepe

Valóban sikeresnek csak az a projekt mondható, melynek hatása még évek múltán is érezhető, emiatt a logikai tervezésben azokat a tényezőket is figyelembe kell venni, melyek ezt biztosítják. A siker egyik záloga a jó menedzsment. Feladata a tervezésen kívül a hatékony megvalósítás, a megfelelő szervezés és irányítás, amelyet a pályázatban résztvevők megfelelő motivációjával és a folyamatos ellenőrzéssel biztosíthat.

Egy projektről akkor mondható el, hogy fenntartható, ha azt követően is hasznos/előnyöket kinél a kedvezményezetteknek, miután az adományozói segítségnyújtás fő része véget ért. Ez azt jelenti, hogy a pályázati eredmények hosszabb távon is hasznosíthatók, és szervesen beépülnek az iskola életébe.

A projekt nyomon követhetőségének egyik alapvető feltétele az objektíven ellenőrizhető mutatók kiválasztása és alkalmazása, ezek alapján kerülhet sor a megfelelő monitoring rendszer kidolgozására. Az objektíven ellenőrizhető jelző azt jelenti, hogy az ugyanazon mutatót mérő különböző személyek ugyanazokat a mérési eredményeket kapják meg. A monitoring eszközök azok a mutatók, illetve
A mérőszámok, melyek előzetesen rögzítésre kerülnek, majd a végrehajtás során a mutatókhoz tartozó tényadatokat a projekt-menedzsment, illetve az értékelést végrehajtó személyek rendelkezésére bocsátják. A monitoring eszközök esetén rendkívül fontos, hogy szabályozásuk egyértelműen meghatározza, kik biztosítják az információkat, illetve, hogy milyen gyakorisággal történik az adatszolgáltatás. A pályázatok sikeres megvalósításának nyomon követésére indikátorokat határoznak meg, amelyek a pályázati dokumentációban szerepelnek.

2.3.5 Jelentések, beszámolók készítése

A bemutatott információk és eljárások talán túl bonyolultnak mutatják be a különböző pályázati eljárásokat. Ne felejtsük el, hogy a pályázatok megvalósítása során közpénzeket – magyar és európai uniós állampolgárok adóforintjait és euróit – használhatjuk fel, ezért vannak a szigorú szabályok és eljárások. Ugyanakkor, ha figyelmesen elolvassuk a megfelelő és szükséges pályázati dokumentációkat, betartjuk a szabályokat, akkor sikeresen megvalósíthatjuk a ki- tűzött feladatokat és eredményesen lezárhatjuk a támogatási folyamatot, a projekteredményeinkkel iskolánk és a megvalósításban résztvevők is gazdagabbá válnak. Ehhez kívánok mindenkinnek sok sikert!
Általánosságban elmondható, hogy az intézmény adminisztrációs fegyelmének is nagyon jót tehet az elektronikus napló bevezetése. A számítógép ugyanis „könyörtelenül” betartatja a belé programozott határidőket diákknak, tanárnak egyaránt, és így az esetleges le nem adott igazolások, el nem végzett feladatok nyomon követése sokkal könnyebb véli az osztályfőnök és az iskolavezetés számára is. Arról nem is beszélve, hogy teljesen egységes elbírálást tesz lehetővé. Sokszor tapasztalhatjuk, hogy az osztályfőnök jó szíve vagy éppen rigorózus hozzáállása miatt néha nagyon különböző módon kerülnek elszámolásra a késő hozzáférés, és így az esetleges le nem adott igazolások, el nem végzett feladatok nyomon követése sokkal könnyebb véli az osztályfőnök és az iskolavezetés számára is. Arról nem is beszélve, hogy teljesen egységes elbírálást tesz lehetővé. Sokszor tapasztalhatjuk, hogy az osztályfőnök jó szíve vagy éppen rigorózus hozzáállása miatt néha nagyon különböző módon kerülnek elszámolásra a késő hozzáférés, és így az esetleges le nem adott igazolások, el nem végzett feladatok nyomon követése sokkal könnyebb véli az osztályfőnök és az iskolavezetés számára is. Arról nem is beszélve, hogy teljesen egységes elbírálást tesz lehetővé. Sokszor tapasztalhatjuk, hogy az osztályfőnök jó szíve vagy éppen rigorózus hozzáállása miatt néha nagyon különböző módon kerülnek elszámolásra a késő hozzáférés, és így az esetleges le nem adott igazolások, el nem végzett feladatok nyomon követése sokkal könnyebb véli az osztályfőnök és az iskolavezetés számára is.

2.2.1.2 Haladási napló - késések, hiányzások nyilvántartása

Egy számítógépalapú rendszer a haladási napló mindkét szerepében, (a tananyagban való előrehaladás nyomon követésénél, valamint a késések és hiányzások adminisztrálásánál) nagyon hatékonyan tud a pedagógus keze alá dolgozni.

A program – az órarend és az osztálynévsorok ismeretében – már abban a pillanatban, ahogy a pedagógus jelszavával azonosítja magát, a legteljesebb mértekben kéz alá tud dolgozni. Automatikusan felkínálja az éppen aktuális rubrikákat, előre kitöltött a soron következő óraszámot és előzetesen beírja azokat a tanulókat, akik aznap vagy az előző órákban sem vettek részt. Ezeket az adatokat a tanárnak már csak jóvá kell hagynia, amivel egyrészt időt tud megvinni, másrészt az adatok összesen a naplóba kerülnek. Természetesen azokat a diákokat, akik az adott órán először hiányoznak és a késők isnek a tanárnak kell beírnia, vagy legalábbis kiválasztani a szoftver által automatikusan felkínált névsorból.

De nem csak a szaktanár, hanem az osztályfőnök munkáját is jelentősen megkönnyíti ez a rendszer. Hiszen például a késések – amelyeket a közoktatási törvény értelmében percpyi pontossággal kell adminisztrálni –, a számítógép folyamatosan és nagy precizitással összesíti. Amennyiben egy tanuló eléri, vagy megközelíti a házirendben vagy a törvényben előírt hiányzási határértéket (ezt akár tantárgyra lebontva is figyelemmel tudja kíséri a program), a számítógép automatikusan generált e-mail üzenetet küld az osztályfőnöknek vagy az igazgatónknak, hogy megtegye a szükséges fegyelmi vagy jogi lépéseket.

A digitális naplót évek óta használó iskolák pedagógusainak elmondása szerint az egyik legfontosabb tényező, ami miatt ez a módszer a konzervatívabb beállítottságú tanárok részéről is hamar elfogadottá válik az, hogy használatával a ha-
Haladási napló

38. ábra: Digitális haladási napló. Forrás: http://mavor.hu

<table>
<thead>
<tr>
<th>Őra</th>
<th>Tankor</th>
<th>tanár</th>
<th>Országművek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.1.</td>
<td>Bánkof Bence</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>3.1.</td>
<td>Bánkof Bence</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>4.1.</td>
<td>Bánkof Bence</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Őra</th>
<th>Tankor</th>
<th>tanár</th>
<th>Országművek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.2.</td>
<td>Bánkof Bence</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>4.2.</td>
<td>Bánkof Bence</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>5.2.</td>
<td>Bánkof Bence</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>6.2.</td>
<td>Bánkof Bence</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>7.2.</td>
<td>Bánkof Bence</td>
<td>85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Őra</th>
<th>Tankor</th>
<th>tanár</th>
<th>Országművek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.3.</td>
<td>Bánkof Bence</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>3.3.</td>
<td>Bánkof Bence</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>4.3.</td>
<td>Bánkof Bence</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>5.3.</td>
<td>Bánkof Bence</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Őra</th>
<th>Tankor</th>
<th>tanár</th>
<th>Országművek</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.4.</td>
<td>Bánkof Bence</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>3.4.</td>
<td>Bánkof Bence</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>4.4.</td>
<td>Bánkof Bence</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>5.4.</td>
<td>Bánkof Bence</td>
<td>32</td>
</tr>
</tbody>
</table>
táridők, előírások maradéktalanul betartathatóak.

Ha egy tanuló nem hozza be az előírt határidőig az igazolását, a rendszer automatikusan igazolatlanokat veszi a hiányzását. Nem kell az osztályfőnöknek fenyegetődni, nem kell magát túl szigorúnak és könyörtelennek érezné.

Ez az elony az iskolavezetés szempontjából is megvan. A pedagógusoknak ugyanis csak a program által beállított ideig lehet utólag beírni az órákat és a hiányzókat a haladási naplóba. Ha ez az idő letelt, a tanár már csak az igazgató vagy az igazgatóhelyettes jelszava segítségével pótolhatja a mulasztást. Ilyenkor azonban nyilván arra is magyarázatot kell adnia, hogy miért nem végezte el a dolgát időben.

A tapasztalatok szerint egy ilyen módon megalakotott rendszer nagyon hamar pontosságra és adminisztrációs fegyelemre szokatja a tanárokat és a diákokat egyaránt.

2.2.1.3 Osztályzatok nyilvántartása

Szintén fontos szerep vár a digitális naplóra az osztályzatok, valamint a félévi és év végi jegyek pontos adminisztrációjában. Végre elmaradhat a „kis kockás füzet”, amibe a tanár az órán beírja a jegyeket és így az eredmények közvetlenül a naplóba kerülnek. Az összes érintett (maga a tanuló, a szaktanár, az osztályfőnök és természetesen a szülő) láthatja az eredményeket és a tendenciát. A számítógép beállítható úgy is, hogy amennyiben a jegyek átlaga egy tárgyból bizonyos érték alá süllyed, figyelmeztetést küld az eredményeket egy-egy diák megítélése az osztályban tanító tanároknak és az osztályfőnöknek a mulasztásra.

2.2.1.4 Dicséretek, fegyelmi fokozatok

A tanárok, osztályfőnökök sokszor nincsenek tisztaiban azzal, hogy egy adott tanuló mennyire másként viselkedik más-más tanórákban. Előfordul, hogy csak az osztályozó konferencián szembesülünk azzal, hogy milyen más az egyes diákok megítélése a különböző szaktanár kollégák által. Amennyiben a dicséretes teljesítményeket és a fegyelmi kihágásokat is a digitális naplóban vezetnék a tanárok, úgy kiegyensúlyozottabb lehetne egy-egy diák megítélése az osztályban tanító tanárok által.

A tapasztalat azt mutatja, hogy a tanárok nem szeretnek dicséretet beírni az ellenőrzőbe. Ennek sok oka lehet, de talán a leginkább azért billen el a mérleg a bejegyzések két fő típusa között az intők irányába, mert ott sok esetben az első felindulás dominálnál, amikor a tanár a sokadik szóbeli figyelmeztetés után a „Hozd ki az ellenőrződet!” módszeréhez nyúl. Ha a digitális napló kéznél van, talán nem okoz majd gondot a jó teljesítmények, pozitív megnyilatkozások adminisztrációja sem. Így valóban teljesebb képet kaphatunk az egyes tanulók órai munkájáról.
2.2.1.5 Szülői tájékoztatás megkönnyítése

Azok az iskolák, amelyek bevezették az elektronikus napló intézményét, könnyű helyzetben vannak a szülőkkel szemben fennálló tájékoztatási kötelezettségük teljesítésében. Egyszerűen az első szülői értekezleten minden tanuló szülője kap egy-egy zárt borítékot, amely az interneten keresztül elérhető tájékoztató oldalra való bejelentkezéshez szükséges személyre szabott azonosítójukat és jelszav-
kat tartalmazza. Ezzel jogot és lehetőséget kapnak arra, hogy betekinthissenek gyermekük iskolai előmenetelének naprakész állásába. Megismerhetik osztálytait, láthatják igazolt és igazolatlan hiányzásait, késéseit. Arra is lehetőségük van, hogy kérjenek egy olyan szolgáltatást az iskolától, hogy az adott tanulót érintő valamennyi osztályzatot, hiányzással, késéssel kapcsolatos adatot e-mailben automatikusan küldjön el nekik a számítógép.

2.2.1.6 Személyiségjogi kérdések

Itt persze felvetődik a kérdés, hogy a tanulónak nem kell-e meghagyni a lehetőséget arra, hogy az esetlegesen rosszul sikerült matematika dolgozat eredményét egy saját maga által megválasztott időpontban „kíméletesen” tudja közölni a szüléivel. Természetesen erre is van mód a digitális napló segítségével. A szülők a frissen bekerült osztályzatokat csak egy bizonyos idő (1–2 nap) elteltével láthatják. Az előbb említett elektronikus levél is csak ennyi késlelettel kerülne kiküldésre.

2.2.1.7 Dolgozatok, témazárók napi számának tervezhetősége

További hozadéka az elektronikus napló használatának, hogy a tanárok könnyen és gyorsan tudomást szerezhetnek arról, hogy ha egy tervezett témazáró időpontjában arra a napra esetleg már egy vagy két másik kollégá is jelezte dolgozatiratási szándékát. Az egy napon iratható dolgozatok száma egyes iskolákban a házirendben is limitálva van, de az ésszerűség is úgy kívánja, hogy a tanárok koordinálják ezt a tevékenységet. Mind a számonkérésekre való felkészülés hatékonysága, mind a tanulók egy tanítási napra való terhelhetőségének van egy ésszerű határa, amelyet ilyen módon előre tervezhetően be lehet tartania a szaktanároknak.

2.2.1.8 Terembeosztás megkönnyítése

Az iskolai munka napi szervezésében komoly problémát szokott jelenteni, hogy a tanárok csak az utolsó pillanatban jelzik az illetékes igazgatóhelyettesnek a speciális teremre való igényüket. Így például, ha dolgozatiratáshoz esetleg nagyobb tanteremre van szükségük, vagy ha a tananyaggal olyan résznél tartanak, ahol video-, esetleg DVD-lejátszót, vagy számítógépes kivetítőt szeretnék használni, akkor az így felszerelt terem közül igényelniük egyet.

A digitális napló segítségével akár otthonról (este, vagy hétvégén is) az interneten keresztül bejelentkezhet az iskolai rendszerbe, megnézheti a terembeosztásban a szabad tantermeket és rögtön le is foglalhatja azt, amire szüksége van. A rendszer annyira rugalmas, hogy amikor egy kolléga bejelentkezik egy másik tantermbe – például dolgozatiratás céljából –, az új terem lefoglalása pillanatától
szabadnak fogja mutatni azt a termet, ahonnan az adott osztály ily módon kikerül. Amennyiben ez a helyiség például DVD lejátszóval van felszerelve, kapóra jöhet egy másik tanárnak, aki éppen ilyenre pályázik.

Az már csak plusz hozadéka az ilyen módon működő rendszernek, hogy az iskolavezetés a teremcserék ellenére állandóan tisztában van a tanárok és az osztályok pillanatnyi helyzetével az iskolán belül.

2.2.1.9 „Kis kockás füzet”, osztályba telepített munkaállomás, vagy PDA?

Fennmarad még a kérdés, hogy ha már van digitális napló, azt milyen módon érhetik el a tanárok magán a tanórán. Több olyan iskolában, ahol anyagi okokból nem tudták vagy egyéb miatt nem akarták megvalósítani azt, hogy minden tanteremben legyen egy hálózatba kötött számítógép-terminál, az a megoldás, hogy a tanár az óra végeztével a lehető leghamarabb talál egy munkaállomást, ahol bejelentkezve be tudja vezetni a számítógéphez az aktuális adatokat. Ezzel a módszerrel az a baj, hogy így elvész a digitális napló kényelmi szolgáltatásai közül azoknak a köre, amelyek az adott tanórához kötődve – a dátum és az időpont, valamint az órarend ismeretében – előre kitöltött rubrikákkal könnyíthet meg a pedagógus dolgát.

A digitális napló szempontjából kényelmes, de kissé drága és vélhetőleg gyorsan amortizálódó megoldás, ha minden osztályteremben található egy állandó jelleggel oda telepített terminál, amely belépési pontként szolgál a rendszerbe.

A legmodernebb és leginkább felhasználóbarát lehetőség azonban a vezeték nélküli internetes technológiák kihasználása. Amennyiben minden pedagógusnak van egy kézi számítógépe (PDA – personal digital assistant), már csak egy lépés, hogy megvalósulhasson az ideális állapot. A tanár az órára belépve bekapcsolja a PDA-ját, ami automatikusan feljelentkezik az iskolai WiFi (vezeték nélküli internet) hálózatra. MAC címével (Media Access Control address – ez egy minden hálózati eszköznek egyedileg meglévő azonosító karakteresora, amelyet a hálózatba lépésekor a szerver ellenőrizni tud) és a tanár által beépített jelszóval biztonságosan felismerteti magát a központi számítógéppel. Mivel a bejelentkezés időpontja adott, az órarendet és az érintett osztály adatait pedig a szerver szolgáltatja, így azonnal a megfelelő adatok (osztály, terem, tantárgy, tanulói névsor, előző óra tananyaga) a tanár rendelkezésére állnak és az órakezdéshez szükséges adminisztrációs elemek már be is töltődnek képernyőre. Amennyiben a PDA beépített GPS (GPS – Global Positioning System, egy rendkívül pontos földrajzi helymeghatározásra alkalmas rendszer) vevővel is rendelkezik, a kis műszer azt is ellenőrizheti, hogy az adatok bejegyzése pillanatában a készülék az órarendben meghatározott helyszínén tartózkodik-e.
2.2.1.10 A digitális napló elterjedése a magyar iskolákban

Az elektronikus napló valóban a 21. század iskolai megoldása, azonban a nagyobb hazai térnyeréséhez két fő kérdést kell megvizsgálnunk.

Az egyik, hogy milyen erőforrások szükségesek egy iskolai rendszer teljes kiépítéséhez, másik az, hogy ez az új módszer mennyire tudja majd kiváltani a hangsúlyosan, kézzel írott naplót.

Vizsgáljuk tehát meg, hogy technikailag mennyire távoli jövő egy ilyen rendszer kiépíthetősége egy mai magyar iskolában.

- A legkényesebb pont magának az elektronikus napló-szoftvernek a beszerzése (vagy saját erőforrásból való elkészítése) és rendszerbe állítása. Az iskola jelenleg kevés lehetőségből választhat.

 A szoftverpiacon jelenleg is kapható néhány, úgynevezett „dobozos”, azaz a gyári csomagolásból kivéve rögtön telepíthető program, és biztosra vehetjük, hogy ezeknek a száma a közeljövőben gyarapodni fog. Az ilyen szoftvert több-kevesebb pénzért meg lehet vásárolni, és ezen a módon egy viszonylag működőképes – szükség esetén még kisebb mértékben testre is szabható – megoldást kapunk.

 (például: http://www.fokir.hu/fokir_tw/v1/hirek.html#20070111)

 Talán ez a legkényelmesebb megoldás, hiszen a vásárolt szoftver rendelkezik garanciával (elsősorban arra nézve, hogy a kézikönyvben/programleírásban állított funkcióknak eleget tesz), jár hozzá felhasználói kézikönyv, sőt akár telefonos segítségnyújtási (helpdesk) szolgáltatás is.

 Ennek a verziónak a háztáblájának, hogy az így vásárolt program törvényesen tartalmazják a kézikönyvet, a szoftver írja a minél szélesebb körű piac igényeinek kiszolgálására reményében olyan szolgáltatásokat is beépít programjába, amelyekre egy adott intézménynek egyáltalán nincs szüksége, olyan egyedi funkciók viszont, amelyek nagyon jól jönnének az épen szóban forgó iskoláknak, esetleg nem lesznek részei a „dobozos” programnak.

- A legdrágább (nem feltétlenül pénzben, hanem a ráfordított munkában mért értékre gondolok itt), és leginkább időigényes, ugyanakkor legjobban testre szabható megoldás a szoftver saját erőforrásokból történő ki-
Van olyan eset is, hogy az intézménynek lehetősége van adaptálni egy másik iskola által elkészített programot és azt csiszolatni a saját igényei szerint. Ez általában a legolcsóbb, ugyanakkor a legtöbb egyedi igény feladását jelentő útja a szoftver beszerzésének. Valamint le kell mondani a szoftver támogatásáról. A programot ingyen, vagy jelképes összegért átadó iskola – minden segítőkészüléke ellenére – nyilván nem fogja lelkessen és folyamatosan válaszolatni a későbbi kérdéseket és törni a fejét a másik helyen óhatatlanul felvetődő helyi jellegű szoftver- és hardverproblémák megoldásán.

Ha a program beszerzése és folyamatos karbantartása megoldott, második lépésként a központi iskolai infrastruktúra megteremtése a feladat. Ez egy központi szerverprogramból és opcionálisan az intézményben kiépítendő WiFi hálózat telepítéséből áll. Itt is elengedhetetlen a témában jártas informatikai szakemberek közreműködése. Mind a számítógépek, mind a vezeték nélküli elérhetőség sok olyan biztonsági kérdést vetnek fel, amelyek szakszerű kockázatelemzése és a talált gyenge pontok megnyugtató védelme nélkül nem szabad belevágni az ilyen kényes műveletbe.

A következő lépés a tanárok hozzáférésének a biztosítása. Erről már volt szó az előbbiekben. Az ott felsorolt lehetőségek közül a minden tanár kezébe PDA-t adó verziót szeretném kiemelni. Szerencsére a kis kéziszámítógépek ára az utóbbi években eléggé lecsökkent. Ez azt jelenti, hogy ha összehasonlítsuk egy, a célunk megfelelő, hálózatba kötött asztali PC beszerzési árával, akkor egy tanterembe telepítendő számítógép bekerülési árából nagyságrendileg két modern, WiFi-képes PDA-t lehet venni. A kisméretű, hordozható eszközöknek még az a használat is megvan, hogy – a teremhez kötött munkaállomásokkal ellentétben – a tanárok még számtalan egyéb célra is használhatják őket. Olyan, a tanításban és a mindennapos iskolai munkában használható funkciók is részesei a kis eszköz repertoárjának, mint a MS Word szövegszerkesztő vagy az Excel táblázatkezelő program egyszerűsített változata és még sok minden más is.
Ha minden szoftveres és hardveres akadály elhárult, akkor következik a talán legnagyobb feladat, a tanárok meggyőzése arról, hogy ez a bevezetendő új rendszerű adminisztráció kedvező lesz a számukra. Itt nehéz helyzetben van az iskolavezetés, mert a meggyőzéshez pont arra lenne szükség, hogy a tanárok már egy ideje viszonylag rutinosan használják az új rendszert és így bizonyosodhassanak meg arról, hogy nem hogy nem több, de jóval kevesebb munkát jelent számukra ennek használata. Szerencsére már elég szép számban vannak olyan iskolák, ahol napi gyakorlatban használják az elektronikus naplót. A kétkedőknek lehet szervezni egy látogatást egy vendégszerető iskolába, ahol saját szemükkel is meggyőződhetnek a módszer előnyeiről, és kifaggathatják az ottani kollégákat a tapasztalatokról.

A második fő kérdéskör az elektronikus adminisztráció hivatalos elismerése. A digitális napló csak akkor ér valamit, ha teljes egészében ki tudja váltani a hagyományos adminisztráció vonatkozó elemeit. Annak nyilvánvalóan nem sok értelme lenne, ha a központi előírások megkötetlenné párhuzamosan a hagyományos napló vezetését is, hiszen akkor a digitális módszer valóban csak plusz energia-befektetést kívánna meg a tanároktól, a nyújtott kényelmi szolgáltatások pedig így értelmüket veszítenék.

Ehhez a lépéshez viszont központi döntés szükségeltetik. Természetesen egy ilyen nagyságrendű kérdésben felelőséven csak akkor határozhat az országos tanügyi vezetés, ha biztosíta látja a feladat teljesítéséhez szükséges pénzügyi eszközöket és meghatározza a használt programok minőségi és ezen belül biztonsági szintjét. Mindenképpen szükséges tehát bizonyos fokú szabványsítás és a végül elfogadásra kerülő programok akkreditációja. Nem szabad viszont olyan helyzetbe hozni az innovatív iskolákat, hogy az eddig befektetett munkát egyszerűen elfelejtsék és az egy-két központilag támogatott program közül választhassanak csak. Ennél sokkal humánusabb az a megoldás, ha ésszerű paramétereket állapít meg az oktatásirányítás és amennyiben a házilag készült program ennek megfelel, vagy némi módosítás után meg tud felelni, az is minden további nélkül megkaphassa az akkreditációt.
2.2.2 Jelenlét és közlekedés számon tartása az iskolaépületben

2.2.2.1 Chipkártya mindenkinek!

Az iskolaépületbe valamint a kiemelt fontosságú helyiségekbe való belépés kontrollja, naplózása több nézőpontból is fontos lehet. Egyrészt szervezési okokból, másrészt a biztonságot szem előtt tartva, harmadrészt kényelmi szempontok figyelembbe vétele miatt.

Már rögyest ennek a témakörnek az elején érdemes megemlíteni, hogy a beléptetésre és az épületen belüli közlekedés figyelésére és naplózására nem azért van szükség, mert az iskola vezetése valamiféle „Nagy Testvér”-ként szeretné nyomon követni az emberek mozgását. Az ilyen módon felhalmozódó információk az esetek többségében egy idő után automatikusan törődnek, (szerencsére törődhetnek) az adatbázisból. Ugyanis ha minden rendben folyik az iskola életében, senki nem lesz kiváncsi ezekre az adatsorokra. Abban a ritka esetben viszont, ha valami probléma történik, ha eltűnik valamilyen érték az öltözóból, ha bombariadó miatt ki kell üríteni az épületet, nagyon jól jöhet, hogy a számítógép adathordozón percre pontosan megtalálható az, hogy ki mikor lépett az épületbe, ki mikor melyik ruhatárat használta, és hogy az adott pillanatban hány ember tartózkodik házon belül, akit figyelmeztetni kell a veszélyre.

Az évszázadok során sok módszert kitaláltak már a beléptetés pontos ellenőrzésére, a portaszolgálatotól a blokkolóóráig, a jelenléti ívtől az ujjlenyomat-olvasóig. Mégis a modern világban, a legszélesebb körben a beléptető kártyák terjedtek el. Ezeknek is több fajtja van. A lyukkártya alapú, a mágnescsikos, vonalkódos stb.

A legpraktikusabban használható kártyatípus az úgynevezett „proximity card”, azaz érintésmentes azonosításra szolgáló chipkártya. Ez egy olyan, alapterületében bankkártya méretű (de annál kb. másfélszer vastagabb) műanyaglap, amelynek az anyagába beöntött chipben tárolt egyedi azonosító és egy szintén láthatatlan antenna található. A kártyaolvasó által kibocsátott rádióhullámok energiája szolgál arra, hogy a kis elektronikai egység mindenféle elem vagy egyéb energiaforrás nélkül akár 10–30 cm távolságról észlelhető legyen, és a benne tárolt azonosítószámot visszasugározza. Komoly előnye, hogy egyszerűsége miatt nem kerül sokba és gyakorlatilag elnyűhetetlen. Persze a többszöri kímosást, a kutyafogat és a farzsebben hordást ez az eszköz sem tolerálja, de átlagos használat mellett hosszú évekig teszi a dolgát hibamentesen.
2.2.2.2 Költségek

Maga a kártya nem túlságosan drága. Még az olyan verzió is, amelyre speciális
printerrel rá lehet nyomtatni az iskola logóját, a felhasználó nevét és esetleg fény-
képét, könyvtári vonalkódját, az is viszonylag elérhető áron (jelenleg 1 000 Ft/db
alatt) beszerezhető. Az ennél egyszerűbb, előre nyomott verziók pedig kifejezet-
ten olcsók. A megszemélyesítést itt esetleg matricára nyomtatva és azt utólag a
kártyára ragasztva lehet megoldani. A kártyaolvasó és az ajtónyitást vezérlő panel
már borsosabb összegbe kerül. (60 és 100 ezer forint közé tehető az ára)

2.2.2.3 Hogyan érhetjük el, hogy a diákok valóban
magukkal hordják a kártyájukat?

A rendszer napi használatához persze fontos, hogy az érintetteknél ott is legyen
ez az azonosításra szolgáló eszköz. Ezt a tapasztalatok szerint nem mindig egy-
szerű kivitelezni annak ellenére, hogy a kártya nem foglal sok helyet, tetszetős
kivitelűre is elkészíthető és nagyon könnyű a használata. Hiszen akár elő sem
kell venni a tárcából, táskából, vagy mellényezsebből, mert az olvasóhoz közel
kerülve ebben az esetben is tőkéletesen ellátja a feladatát. A diákok a tapasztalat-
tok szerint azonban első körben nem tekintik a kártyát „trendinek”, ezért ha nem
feltétlenül szükséges, nem tartják azt maguknál.

A legkézenfekvőbb megoldás, hogy olyan szolgáltatást, vagy szolgáltatásokat
kell kötni a kártyához, amelyekre a napi iskolai gyakorlatban mindenki szük-
sége van. Így a saját jól felfogott érdeke, hogy az erre jogosultságot adó eszközt
magával hordja. Az alábbiakban néhány olyan példát sorolok fel, amelyeknek a
hasznosságát a gyakorlatban is kipróbáltuk.

osztályültöző nyitása

Amennyiben az iskolai ruhatár (a tanulók kabátjának, tornafelszerelésének el-
helyezésére szolgáló helyiség) osztály, évfolyam, vagy akár fiú-lány bontásban
valósul meg, egyszerű mágneszaráas ajtókkal és hozzájuk tartozó kártyaolvasóval
könnyen megoldható, hogy csak az arra feljogosított kártyával rendelkezők tudják
az ajtók kinyitni. Gazdaságilag határt szabhat ennek a megoldásnak a kártyaolva-
sók ára. Nyilván nem éri meg ez a módszer, ha csak pár diákról jut egy-egy öltő-
zőszekrény, hiszen ez minden egységre egy olvasót, egy nyitást vezérlő panel és
egy mágneszaráat jelentene.

1A cikk 2008 augusztusában íródott.
könyvtárjegy
Amennyiben az iskolai könyvtári kölcsönzési rendszer már elektronikus katalóguson alapszik, nagyon könnyű megvalósítani, hogy a diákok, tanárok kártyájának azonosítója megfeleljen az olvasói jegy számának. Ez esetben az olvasó kölcsönzéskor, vagy a könyv visszahozásakor minden további nélkül használhatja a kártyáját azonosításra. A régebben készült könyvtárprogramok még vonalkód-dal dolgoznak, de ezt a jelzést is fel lehet vinni a kártya nyomtatható felületére. Ez esetben itt megtakaríthatjuk a kártyaolvasót is.

ebédjegy
Kártya ügyben az eddigi legnagyobb sikert iskolánkban az ebédjegy chipkártyára váltsa érte el. A hagyományos papíralapú ebédjegyhez képest több komoly előnye is van az elektronikus megoldásnak.

- A kártya nagyobb, értékesebb. Nehezebb elveszteni és könnyebb megtalálni, hiszen rajta van a tulajdonos neve.
- Leolvasáskor a konyhás néni egy monitoron láthatja a kártyát használó személy – a rendszerben tárolt – fényképét, így a jogosulatlan használat egyből kiderül.

43.ábra: chipkártya- és olvasó (fotó: Bartus Nóra)
A 21. század iskolája

- A monitoron folyamatosan látszik a még ki nem adott adagok száma, így a rendelkezésre álló repeta mennyisége is nyilvános.
- Ha a program erre lehetőséget ad, a kártyatulajdonos (betegség vagy egyéb akadályoztatás esetén akár interneten keresztül is) átadhatja az ebédjét másnak. Egy általa meghatározott személynek, vagy személyek egy körének (pl. osztály, évfolyam stb.)

2.2.2.4 Főbejárati beléptetés és a kiemelt helyiségek nyitásának naplózása

Több iskola élt azzal a lehetőséggel, hogy a chipkártya rendszerbe állításakor az épületbe való be- és kilépést is ezen a módon ellenőrizzék és naplózzák. Ha a megfelelő infrastruktúra rendelkezésre áll, ez egy meglehetősen nagy biztonságú megoldás az illetéktermelőknek az épülettől való távolságának, nem kevésbé a tanulók engedély nélküli távozásának elkerülésére. Ez a rendszer arra is kiválóan alkalmas, hogy az adott pillanatban az épületben tartózkodók számát, illetve akár személyt azonosítsuk. Ez egy esetleges bombariadó vagy tűz esetén rendkívüli fontosságú lehet.

Figyelni kell azonban arra, hogy ez a rendszer csak akkor megbízható, ha az épület többi bejáratát is szoros ellenőrzés alatt tartjuk. Emellett a főbejárati be és kiléptetést úgynevezett forgóvillás kapuval vagy más, ezzel azonos hatékonyságú eszközzel kell megoldani, amelyik úgy működik, hogy egy kártyalehúzásra csak egy-egy személyt enged be- illetve kilépni az épületből. Annak a reménye, hogy ilyen speciális beléptető eszköz nélkül – kizárólag a kártyahasználók kötelességtudatára és szabálykövető magatartására építve – a bejárati forgalmat pontosan naplózni tudjuk, egészen biztosan hiú ábránd marad. Több intézmény arra használja a beléptetőkártyát, hogy a diákok (esetleg akár a tanárok, és/ vagy a technikai dolgozók) esetleges késését ellenőrizzék. A rendszer rögzíti a belépés időpontját, innen kezdve már csak programozás kérdése, hogy egy elektronikus órarendet mellé téve, a szoftver automatikusan ellenőrizze, hogy az illető időben érkezett-e be az iskolába.

44.ábra: Forgóvillás kapu
2.2.2.5 Éjjeliőr mozgásának figyelése

Nagyon jól kihasználható a beléptető rendszer akkor, ha az iskolában éjjeliőr, vagy hétvégi ügyeleti szolgálat dolgozik. Az épületben meghatározott stratégiai pontokra telepített kártyav обслужások (akár az előbb említett hátsó kijárat ajtajának nyitására szolgáló pont kívül és belül) jól dokumentálható bizonyítékul szolgálhatnak arra, hogy az őr a szabályzatban előírt időpontban ott járt, és az olvasó előtt elhúzta a kártyáját. Ilyenkor a rendszer naplózza a kártya azonosítását, még akkor is, ha az ajtó kinyitása nincs az őr kártyájának engedélyezve. Az ellenőrzést végző személy azonban láthatja, hogy a kellő időben és számban megtörtént-e az épület bejáratása az éjszaka és a hétvége folyamán.

2.3.2.6 Információs pontok az iskolában

Ha már minden diáknak és tanárnak van chipkártyája (és esetleg még a digitális napló) és az iskolában már csak egy lépés a személyre szabott információs pultok telepítése az intézményben. Ezek olyan falra vagy állványa szerelt monitorok (opcionálisan billentyűzet, egér is tartozhat hozzájuk), amelyek mellett egy kártyavolvasó is található. Iskolánkban a monitoron alaphelyzetben az aktuális helyettesítési információk láthatók. Leolvasható róla, hogy a felhasználó, hogyki aznap melyik tanár hiányzik, ki fogja őt helyettesíteni. A táblázat második oszlopában ugyanezek az információk a következő nap erejéig láthatók. Emellett a felhasználóknak lehetőségük lesz számítógépes jelszavakkal is bejelentkezni egy úgynevezett második szintű menübe. Itt már olyan információk is megtalálhatók, amelyek csak a tulajdonos láthat, hiszen nem szerencsés, ha mondjuk egy elvesztett és más által megtalált kártyával is el lehet érni. Itt láthatóak az illető könyvtartozásai, osztálypénz befizetései, iskolán belüli üzenetek, személyes adatai.
2.3.3 Telefon (számla) - kezelés

2.3.3.1 Egyre emelkedő kommunikációs költségek elleni védekezés

Ahogy a tanárok és az iskolai dolgozók egyre nagyobb része rendelkezik már mobiltelefonnal, és sokan használnak közülük családi dijcsomagokat, úgy csökkent az egy napra eső hívások száma. Sajnos a diák folyamatos emelkedése miatt a kommunikációs költségek mégsem csökkennék jelentősen. Több olyan módszer van, amivel hatékonyan lehet kontrollálni és így csökkenteni is ezeket a kifizetéseket. Ezek közül szeretnénk néhányat bemutatni.

2.3.3.2 A kimenő hívások naplózása, és visszakereshetősége

Elkerülhetetlen, hogy az iskolából az iskolavezetés, a pedagógus kollégák, vagy a titkárak számos hívásot bonyolítanak le. Ez része a napi rendes munkának. Az indokolt hívásokat sem megtillani, sem korlátozni nem lehet. Hívni kell a szülöket, a fenntartó illetékeseit, a szomszéd iskolákat, a színházi jegyirodát, a turistaszállást és még ezer mást. Az osztályfőnököknek különösen sok telefonálivalójuk lehet, főleg ha a feladatukat komolyan veszik, és például a tanuló hiányzása esetén azt rögtön jelzik a szülőnek.

Az épületben általában üzemel egy telefonközpont, amely több fővonalat is kezel, így a szünetekben egy időben akár 4-6 párhuzamos telefonbeszélgetés is bonyolódhat a mellékekről. Az, hogy ezek közül melyik a magánügyben zajló és melyik a hivatalos, melyik kollégája használja ki túlzott mértékben az iskola ily módon rendelkezésre álló erőforrásait, azt nagyon nehéz számítógépes segédeszköz nélkül megmondani.

Ezért sok iskola döntött már eddigi úgy, hogy befektet egy olyan tarifaelszámoló rendszer telepítésébe, amelyik naplózza a kimenő hívásokat. Azoknak az időtartamának és lehetőségének megerősítését, a hívó személyét egyértelműen azonosítja és meghatározza az adathordozó alapján. Ez látszólag egyszerű feladat, a legtöbb régebbi rendszerre épülő szokásos módon rendelkezésre álló erőforrásait, azt nagyon nehéz számítógépes segédeszköz nélkül megmondani.

Ezért sok iskola döntött már eddigi úgy, hogy befektet egy olyan tarifaelszámoló rendszer telepítésébe, amelyik naplózza a kimenő hívásokat. Azoknak az időtartamának és lehetőségének megerősítését, a hívó személyét egyértelműen azonosítja és meghatározza az adathordozó alapján. Ez látszólag egyszerű feladat, a legtöbb régebbi eszköz is alkalmas erre. Egy modern rendszernek fizetődik megfelelő biztonsági elvárásoknak, könnyen kezelhető a modern számítógépes operációs rendszer alatt, és tudja kezelni a sokfélé újonnan felmerülő technikai igényt még ezen túl is számos feltételnek kell megfelelnie.

A piacon sok olyan cég van jelen, amely könnyű és olcsó megoldással kecseg a kimenő telefonhívások kontrolljára vonatkozóan. A döntés előtt azonban nagyon érdemes körüljárni a kérdést. Egy ilyen rendszer kiépítése sok közvetlen és járulékos költséget vonz maga után, és ha az egyik mellett letettük a voksot, utána nagyon nehéz és legalább olyan drága a váltás egy másik megoldásra.
2.3.3.3 Ár/szolgáltatás

A jó tarifaelszámoló rendszer először is nagy biztonsággal képes megkülönböztetni egymástól a felhasználókat. Ezt többnyire a telefonkészüléken beírt lentyúzott kódok alapján teszi meg. Száz földött potenciális használóval (ezt a számot egy átlagos méretű tantestület a titkársági és technikai dolgozókkal kiegészítve gond nélkül elérheti) érdemes kicsit bonyolultabb kódot alkalmazni. A legbiztonságosabb, ha a kód két részből áll egy legalább 3 számjegyű azonosítóból és egy 4 jegyű PIN-ből (personal identification number – személyi azonosító szám). A két egységet egy csillag (*) vagy egy kettőskereszt (#) választja el egymástól. Így igen kevés az esély arra, hogy valamilyen felhasználó véletlenszerűen akad rá egy kollégának a kódjára, és a továbbiakban azt használja el egymástól. Ez a jelenség könnyen előfordulhat, ha csak egy egyszerű számsor azonosítja a telefonáltót, főleg, ha az emberek maguk választják meg a kódjukat. Ilyenkor az egyszerűség kedvéért hajlamosak nagyon könnyen kitalálható számkódot mondani (11111 vagy 123456). Természetesen a biztonságosabb kódosztásnál is nyomatékosan fel kell hívni a felhasználók figyelmét arra, hogy az azonosítókat tartsák titokban.

Az igazán jó választás – bár az utóbbi pár évben a telefonszámok liberalizációnja miatt az egyre kevésbé működik hatékonyan – az olyan szoftver és a hozzá kapcsolható telefonközpont, amely képes arra, hogy a három nagy mobil cég SIM kártyáját is tudja kezelni. Ez a gyakorlatban azt jelenti, hogy ha valaki az intézményből egy olyan körzetszámot tárcsáz, amelyik egy mobil szolgáltatóhöz tartozó telefon hív, akkor a központ automatikusan arra a hozzá kapcsolt SIM kártyára irányítja a hívást, amelyik ehhez a céghez tartozik, hiszen a percdíjak nagy valószínűséggel így lesznek a legalacsonyabbak.

Manapság, amikor a számhordozás szabadsága miatt a körzetszám már nem azonosítja egyértelműen a szolgáltatót, ez a funkció már nem hasznos, mint annak előtte, de még mindig jelentős költségeket lehet így megtakarítani.

2.2.3.4 Telefonálási szabályzat

A gyakorlat azt mutatja, hogy ha az érintettek tudják, hogy az általuk kezdeményezett híváson a telefonközpont naplózza, ez már önmagában jelentőségen (30-50%-kal csökkenti a telefonálási kedvet. Különösen vonatkozik ez a nagy költségű külföldi vagy emelt díjas hívásokra.

Ennek ellenére érdemes egy olyan szabályzatot készíteni a Közalkalmazotti Tanács és a szakszervezet bevonásával, amelyik rendelkezik arról, hogy a dolgozók mennyi telefonköltséget halmozhatnak fel egy adott időszak alatt anélkül, hogy arról magyarázatot kellene adniuk. Természetesen vannak olyan körülmények,
amelyeknek a következményeként akár igen jelentősen megemelkedik egy-egy időszakra valakinek a számlája. De ha ezt például egy hivatalos külföldi út szervezésének a telefonigényével tudja magyarázni, ez az indok elfogadható lehet. Az osztályfőnökök nyilván sokkal magasabb keretet kapnak. Ha azonban valaki meghaladja a számára meghatározott kvótát, és nem tud elfogadható magyarázatot adni az általa generált túlzott költségekre, annak bizony meg kell fizetnie a különbözetet.

2.2.3.5 Flottakedvezmények kihasználása

Mindhárom mobilszolgáltató cég kínálatában szerepel az a lehetőség, hogy elegendő számú felhasználó esetén rendkívül kedvezményes ajánlatot adjon az azonos körbe tartozó ügyfeleknek mind az előfizetési díj, mind a percdíjak, mind az előfizetéshez opcionálisan megrendelhető extra szolgáltatások (ingyen küldhető SMS, internet elérés, stb.) tekintetében. Ez a kedvezményes percdíj sokszor egészen odáig elmegy, hogy az úgynevezett „flotta” tagjai egymás között lebonyolított hívások esetén egyáltalán nem fizetnek a telefonálásért. Ez a tanárokknak és a technikai dolgozóknak akkor éri éri meg igazán, ha a flotta tulajdonosa, (esetünkben az iskola) hozzájárul ahhoz, hogy egy-egy kollégá a családtagjait, sőt rokonait, barátait is bevonja a flottakörbe. Ez persze nem kockázat nélküli ajánlat az intézmény részéről, hiszen a flottakedvezmény éppen azon a biztosítékon alapszik, hogy amennyiben egy flottatag nem egyenlíti ki a számláját, azt zárós határidőn belül a flottatulajdonosnak küldi tovább a szolgáltató. Tehát abban az esetben, ha egy kollégá kölső tagokat is be szeretne hozni a flottába, természetesen nyilatkozatban kell köteleznie magát arra, hogy amennyiben az általa ajánlott előfizető nem teljesíti számlafizetési kötelezettségét, az így keletkezett kárt a kezességet vállaló az iskolának megtéríti.

2.2.3.6 Ingyenes VoIP telefonálási lehetőségek

Számos olyan internetes cég létezik, amelyik „telefonszerű” tehát beszédhang kétirányú átvitelére alkalmas szolgáltatást (VoIP, azaz Voice over Internet Protocol – internetes adatközvetítési módszerekre épülő hangátvitel) nyújt a világháló és a számítógép hangkártyája segítségével.

Érdemes ránézni a http://www.voipproducts.eu/ internetes oldalra, ott felso- rolnak rögtön egy tucatot. Vannak köztük fizetősekk, reklámok által szponzoráltak és (látszólag) teljesen ingyenesek is.

Használatukhoz többnyire le kell tölteni és a számítógépre telepíteni a megfelelő szoftvert az internetről, bejelentkezni a cég honlapján és megkeresni a felhívni kívánt partner nevét az adatbázisban. Hálá a szélessavú internet kapcsolatnak és a nagy hatásfokú adattömörítési eljárásoknak, innentől kezdve a hang jó minősé-
A 21. SZÁZAD ISKOLÁJA

gű átvitele mindkét irányban már tényleg nem jelent a programnak gondot. Sok-
szor még kisebb-nagyobb méretű és elfogadható minőségű „élő” kép is belefér
a sávszélességbe. Ez utóbbihoz természetesen webkamerára, azaz a számító-
géphez csatlakoztatható kép felvételére alkalmas eszközre is szükség van. Mivel
azonban ezeknek a perifériáknak az ára meglehetősen alacsony, nem jelent nagy
érvágást egy ilyen valóban 21. századi megoldás, a videotelefonálás kipróbálása
és meghonosítása az iskolában.

Az ilyen ingyenes szolgáltatási lehetőségeket a legtöbbször persze érdemes
óvatosan kezelni, de kétségtelen, hogy van közöttük hosszú ideje a piacon lévő
és valóban megbízhatónak tűnő cég is. Sok esetben, például amikor külföldi hi-
vást szeretnénk az iskolából lebonyolítani, valóban nagyon jelentős költségme-
takarítást eredményezhet ennek a technológiának az igénybevétele.

INFRASTRUKTURA
2.3 Pályázati lehetőségek

2.3.1 Miért pályázzunk?

A különböző fejlesztési folyamatok költségigényesen valósíthatók meg. Ezekhez általában nem állnak rendelkezésre források az iskolákban. Más lehetőségünk nincs, mint pályázatot írunk, amelyet, ha jól elkészítettünk és kiválasztottánk a benyújtó intézményt, akkor „kedvezményezett” válhatunk. A megadott határidőn belül, a benyújtott és elfogadott feladat- és költségtervet kivitelezve valósíthatjuk meg a fejlesztési feladatot, más szóval projektet. Gyakran használjuk ezt a kifejezést, de tekintsük át, mi is itt a projekt fogalma: Mindazon feladatok összesége, amelyek egyszeri, komplex tevékenységfolyamatok által megoldhatók, jól körülhatárolt cél erdekében, előre rögzített határidőre – meghatározott kezdési és befejezési időpont –, és teljesítménnyel, adott költségkereten belül. Érdemes alaposan, akár többször is elolvasni ezt a definíciót, hiszen minden egyes szókapcsolatnak nagyon nagy jelentősége van. Talán egy kicsivel egyszerűbb meghatározás az alábbi: „A projekt, egy nem megszokott, nem ismétlődő feladat, különálló időbeli, pénzügyi, és technikai megvalósítási célokkal.” (HARRISON, 1995)

2.3.2 Információk, pályázati felhívások

A Pályázati felhívás a nyilvánosság tájékoztatása a pályázati lehetőségről. Tekintsük át azokat a legfontosabb elemeket, amelyeket a pályázati felhívások tartalmazzák.

A pályázati felhívás hivatkozási száma és címe. Ez alapján tudjuk beazonosítani, hogy mely kiiró intézmény melyik pályázata után érdeklődünk, a későbbiekben milyen tájékoztató és pályázati formanyomtatványok beszerzésére, vagy internetről történő letöltésére lesz szükség, (pl. „A szak- és felnőttképzés struktúrájának átalakítása” konstrukció keretében a „TISZK rendszer továbbfejlesztése” című pályázati felhívása, kódszám: TÁMOP-2.2.3/07/1/KMR 1. forduló).
A program pénzügyi forrásai határozzák meg, hogy melyik szervezet, milyen módon biztosít támogatást a kedvezményezetteknek, azaz a majdani nyertes pályázóknak. Az iskolák esetében általában 100%-os támogatás várható, de ettől eltérő pályázatok is vannak, pl. az EU Leonardo da Vinci pályázata, csak maximum 75%-os támogatást nyújt, ami azt jelenti, hogy a hiányzó, legalább 25%-os költségeket saját forrásból kell biztosítani. A 100%-os támogatás is csak az iskolák számára nyújt teljes támogatást, hiszen az „Új Magyarország Fejlesztési Terv”- UMFT –, keretében meghirdetett pályázatokat az Európai Unió csak részben támogatja. A közbiztosítmények esetében a hazai költségvetésből vagy egyéb alapokból, pl. Szakképzési Alap egészítik ki a hiányzó forrást a 100%-hoz. Az előző példában bemutatott pályázati felhívás pénzügyi forrása az UMFT Társadalmi Megújulás Operatív Program, így minden egyes pályázati dokumentációt olvasható: „A projektek az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósulnak meg”

A tevékenységtípusok és projektidőtartam ismerete határozza meg, hogy milyen ötlettel, mennyi idejű tevékenységekhez kaphatunk támogatást. A pályázat előkészítése során gyakran ad félelmeretet okot, és akár már formai hiba miatt kizárást is eredményezhet, ha nem vagyunk tisztában, hogy milyen típusú tevékenységnkhoz várunk támogatást. Ez lehet fejlesztés, pl. elektronikus tananyagfejlesztés, lehet „innováció transzfer”, amikor a külföldön már kifejlesztett megoldást szeretnénk itthon is hasznosítani, beruházás, diákcsere stb. A projektidőtartam általában 6-36 hónap között fordul elő a tevékenységtípustól és a rendelkezésre álló forrástól függően fejlesztési támogatásoknál, de a tanár- és diákcsereknél a néhány hetes kiutazásra is elnyerhető támogatás.

A rendelkezésre álló összeg megadásánál meghatározzák a teljes támogatási keretet. A támogatási összeghatárok ismerete két szempont miatt is fontos. Ez alapján tervezhető a teljes projektköltségvetés, illetve a rendelkezésre álló összeg és a támogatási összeghatárokat alapján könnyen kiszámolható, hogy várhatóan hány sikeres pályázó kaphat támogatást, azaz milyen esélyeink vannak. A pályázatok összeállításánál figyelembe kell venni, hogy melyek az elszámolható költségek, és milyen hosszúságú az ún. projektidő. Mindkettőre a részletes pályázati útmutatóból kaphatunk magyarázatot.

A várt eredmények megfogalmazása segíti a projekttervezést illetve befolyásolja a döntéshozókat, hogy a benyújtott pályázatok mennyire felelnek meg ezeknek az elvárásoknak.

A támogatható pályázók körének ismerete azért fontos, mert ez alapján dönthetjük el, hogy egyáltalán benyújthatunk-e pályázati javaslatot, pl. a kisvállalkozók számára kiírt pályázatra nem adhat be iskola pályázatot, bár lehet, hogy a témakör számukra is nagyon kedvező lenne.
A pályázati formanyomtatványon adható be a pályázati javaslat. Ennek formája kötött, szerkezetét megváltoztatni nem szabad! Ma már csak szövegszerkesztővel készített, folyamatos oldalszámmal ellátott, bonthatatlan formában, fűzött vagy spirálozott, a pályázati felhívásban rögzített számú eredeti és másolt kinyomtatott példányokat, illetve mellékelt elektronikus adathordozókat kell benyújtani. Egyre gyakrabban fordul elő, hogy interneten keresztül – előzetes regisztrációt követően -, kell az elektronikus urlapot kitölteni és azt esetleg kinyomtatva és aláírva is beküldeni. Nagyon fontos az aláíró személye, aki képviselheti az intézményt. Előfordulhat aláírási címpéldány bekérése is. A cégszerű aláírás esetén, az igazgató mellett, a gazdasági vezetőnek is alá kell írni a dokumentumokat.

Az elérhetőségek megadása a pályázat beadása miatt fontos, de az is előfordulhat, hogy telefonon, vagy személyesen is a pályázó konzultációs lehetőséget biztosít a benyújtási határidő előtt. Néhány esetben arra van mód, hogy a 7-14 nappal a benyújtási határidő előtt beadott pályázatokat formailag értékeljék, és lehetőség nyilik a javításra a végleges határidő előtt. Az eredményhirdetés várható időpontja inkább tájékoztató jellegű, ez alapján tudja, hogy mikor számíthat a végeredményre, a pályázat támogatására vagy az elutasításra. Ez a pályázat előkészítésénél is fontos szempont, hiszen ez alapján – figyelembe véve a szerződéskötési időszakot is –, tervezhető az elvégzendő feladatok megkezdése.

- Aktuális pályázatok
 - Egész életen át tartó tanulás program
 - Comenius
 - Erasmus
 - Leonardo da Vinci
 - Grundtvig
A 21. század iskolája

- Szakértői tanulmányutak
- Jean Monnet
- Transzverzális programok
- Szakiskolai mobilitási program
- Középtávú szakképzési kutatások
- Norvég alap

Ezeknél a pályázatoknál minden esetben találunk részletes leírást a pályázat céljáról, a pályázók köréről, az aktuális pályázati felhívásoknál a pályázati útmutató és a letölthető űrlapok is adottak.

Az Európai Unió források hazai kezelését a Nemzeti Fejlesztési Ügynökség – http://www.nfu.hu/ – végzi. A weboldalon megtalálható a részletes Új Magyarország Fejlesztési Terv, amelynek keretében a közoktatási intézményeit a Társadalmi Megújulás Operatív Program (TÁMOP) és a Társadalmi Infrastruktúra Operatív Program (TIOP) keretében kiírt pályázatok érintik.

2.3.3 Pályázatok előkészítése és írása

A pályázatok előkészítése során térjünk vissza a projekt általános ismérveihez:

- megvalósítandó célíal rendelkezik,
- projektterv alapján készül el,
- adott idő- és költségkerettel rendelkezik,
- költségterve projektidőre bontott,
- minőségi követelményekkel kell számolni,
- bizonytalansági tényezők, akadályok nehezíthetik a megvalósulást,
- egyedi szervezeti forma, projekt-menedzsment csoport is megvalósíthatja a tervezett feladatokat.

A cél az, hogy felmérjük mindazokat a tényezőket, melyek szükségesek és lehetővé teszik a fejlesztési projektnél, illetve elősegíthetik vagy akadályozhatják a projekt végrehajtását.

A feladatok logikus és hatékony elvégzése, valamint az ellenőrzés megkönyvelése céljából a projekt tevékenységeit ütemezni kell, vagyis készíteni kell egy tevékenységi tervet, mely a tevékenységek sorrendjét és időtartamát tartalmazza. Miután a tevékenységeket megtervezték, meg kell határozni a tevékenységek elvégzéséhez szükséges fizikai, anyagi és pénzügyi erőforrásokat. Mivel a későbbiekben különböző szempontok szerint kell összevenni és összeszinteni a költségeket, az erőforrásokat előre meghatározott költségkategóriák szerint kell felosztani. Ehhez általában a pályázati dokumentumokban találunk különböző Excel táblákat megfelelő strukturával. A költségvetés kiegészítéseket szöveges magyarázatot is kérhet a pályázatot kiíró az egyes források tervezésének bemutatása érdekében, amellyel ellenőrizhető, hogy az elkészített költségvetés mennyire reális árakkal és költségekkel készült, illetve milyen kapcsolata van a projektcélokkal és az elvégzendő feladatokkal.

A feladatok megvalósításához időtervet kell készíteni, amely a projekt tevékenységeinek időbeli megvalósulását grafikailag ábrázoló terv. Időtervezési technikákkal szembeni követelmények:

Egyetemlegesség, az összes tevékenység és azok kapcsolatait, összefüggéseit képes legyen ábrázolni.

Rugalmaság, a jövőbeni változások átvételére alkalmas legyen.

Áttekinthetőség, a szükséges információk megjelenítésére legyen alkalmas.

Pontosság, jelenítse meg a megvalósítás realizását, legyen egyértelmű és megfelelően nyomon követhető.
Időtervezési szempontok:
 ♦ Tevékenység
 ○ két konkrétan meghatározott időpont között teljesítésre kerülő projektelem
 ○ teljesítése erőforrást igényel
 ○ helyszíne meghatározható
 ♦ Tevékenységek időtartama
 ○ adott tevékenység elvégzéséhez szükséges időmennyiség
 ○ befolyásolja a munkamennyiség, erőforrás mennyiség, erőforrások teljesítőképessége, külső korlátozó körülmények
 ♦ Tevékenységek logikai kapcsolata
 ○ párhuzamosan végezhető tevékenységek köre
 ○ egymás után végezhető tevékenységek

A mérföldkövek, olyan különleges jelentőségű események, amelyek a projekt előrehaladásában fontosak. A projektszakaszok "metszási pontjaival" is egybe eshetnek, ún. döntési pontok. A mérföldkövek jellemzői, hogy nincs időtartamuk, fontos határpontokat jelölnek, segítenek a megvalósulás nyomon követésében és a közbenső eredmények értékelésében.

A legelterjedtebb időtervezési technika a Gantt-diagram alkalmazása.

![Gantt-diagram](image)
Általános jellemzői:
- szalagdiagram,
- legrégebbi tervezési technika,
- elkészítése és értelmezése könnyű,
- azonnal igazítható a tervezési követelmények széles változataihoz,
- tevékenységek a bal oldalon, tevékenységek időtartama a vízszintes szalagon található,
- jól látható a párhuzamosan végezhető tevékenységek köre.

A jó előkészített projekt ismérvei:
- releváns,
- valós igényre alapul,
- célorientált,
- a kiírásnak megfelel,
- megvalósítható,
- jól átgondolt, következetes,
- eredményei mérhetők,
- reális költségvetéssel rendelkezik,
- világos a munkamegosztás,
- előzetesen felmért kockázatokat tartalmazza,
- fenntartható,
- a célcsoport számára nyújtott előnyök a fejlesztés után is biztosíthatók.

2.3.4 Pályázatok megvalósítása és a monitoring szerepe

Valóban sikeresnek csak az a projekt mondható, melynek hatása még évek múltán is érezhető, emiatt a logikai tervezésben azokat a tényezőket is figyelembe kell venni, melyek ezt biztosítják. A siker egyik záloga a jó menedzsment. Feladata a tervezésen kívül a hatékony megvalósítás, a megfelelő szervezés és irányítás, amelyet a pályázatban résztvevők megfelelő motivációjával és a folyamatos ellenőrzéssel biztosíthat.

Egy projektről akkor mondható el, hogy fenntartható, ha azt követően is hasznos/előnyöket kínál a kedvezményezetteknél, miután az adományozói segítségnyújtás fő része véget ért. Ez azt jelenti, hogy a pályázati eredmények hosszabb távon is hasznosíthatók, és szervesen beépülnek az iskola életébe.

A projekt nyomon követhetőségének egyik alapvető feltétele az objektíven ellenőrizhető mutatók kiválasztása és alkalmazása, ezek alapján kerülhet sor a megfelelő monitoring rendszer kidolgozására. Az objektíven ellenőrizhető jelző azt jelenti, hogy az ugyanazon mutatót mérő különböző személyek ugyanazokat a mérési eredményeket kapják meg. A monitoring eszközök azok a mutatók, illetve
mérőszámok, melyek előzetesen rögzítésre kerülnek, majd a végrehajtás során a mutatókhoz tartozó tényadatokat a projekt-menedzsment, illetve az értékelést végrehajtó személyek rendelkezésére bocsátják. A monitoring eszközök esetén rendkívül fontos, hogy szabályozásuk egyértelműen meghatározza, kik biztosítják az információkat, illetve, hogy milyen gyakorisággal történik az adatszolgáltatás. A pályázatok sikeres megvalósításának nyomon követésére indikátorokat határoznak meg, amelyek a pályázati dokumentációban szerepelnek.

2.3.5 Jelentések, beszámolók készítése

A bemutatott információk és eljárások talán túl bonyolultnak mutatják be a különböző pályázati eljárásokat. Ne felejtsük el, hogy a pályázatok megvalósítása során közpénzeket – magyar és európai uniós állampolgárokat adóforintjait és euróit – használhatjuk fel, ezért vannak a szigorú szabályok és eljárások. Ugyanakkor, ha figyelmesen elolvassuk a megfelelő és szükséges pályázati dokumentációkat, betartjuk a szabályokat, akkor sikeresen megvalósíthatjuk a kívánt feladatokat és eredményesen lezúhatjuk a támogatási folyamatot, a projekteredményeinkkel iskolánk és a megvalósításban résztvevők is gazdagabbá válnak. Ehhez kívánok mindenkinek sok sikert!
A 21. század iskolája

2.4 CRM az iskolában

Kemény Szilvia, Kovács László

A CRM rövidítés ügyfélkapcsolat-kezelő rendszert (customer relationship management) jelent. A háttérben természetesen sokkal több van ennél: az informatikai megoldásokkal támogatott ügyfélkapcsolat kezelési és ehhez kapcsolódó üzleti folyamatok egységes rendszerekbe szervezése már viszonylag hosszú múlttal rendelkezik. A mai CRM rendszerek alapjai a 80-as években kezdtek ki alakulni, mikor a régóta ismert elvárásokhoz már megfelelő informatikai háttér is rendelkezésre állt, illetve a vállalatirányítás feladatait többé-kevésbé sikerült automatizálni, és az így felszabadult időben az üzleti döntéshozóknak lehetőségük nyílt arra, hogy végiggondolják megfogalmazzák, mik azok az üzleti területek, amelyekre érdekes valamilyen informatikai támogatást találni. A cél elsősorban a folyamatok egységesítése, az emberi beavatkozást nem feltétlenül igénylő feladatok automatizálása, illetve az addigi gyakorlat – papíron, fejben tárolt információk – szerint láthatóan már nem kezelhető és még kevésbé elemezhető információk kezelése volt. Ezt az igényt tovább erősítette az is, hogy postakocsiról mobiltelefonra váltottunk, és az internet megjelenésével a kommunikáció módja egyik napról a másikra győkeresen átalakult. Az elvárás már az, hogy az információk azonnal jelen legyenek és rendelkezésre álljanak annak, akinek erre ténylegesen szüksége van. A személyeket szerepkörökkel cseréljük fel, mivel azt a gyakorlatot, hogy valaki az első munkahelyéről megy nyugdíjba felváltotta az, hogy az emberek életük során többször állást váltanak. Ezekre a kihívásokra volt válasz a CRM rendszer, amely egy alaposan átgondolt üzleti logika és folyamatvezérelt informatikai megvalósítás.

A versenyszférából számos megoldás – vagy ezek egyes elemei – kerülnek át az élet más területeire, így a CRM megoldások is kezdenek „átszivárogni” a közszféra, közoktatás és egyéb, nem klasszikus értelemben vett üzleti világba. Részben azért, mert elmosódnak a határok a versenyszféra és a közszféra között, részben pedig azért, mert a fluktuáció miatt az egyes emberek viszik magukkal a megszerzett tudást, tapasztalatot.

Sajnos ez a folyamat kicsit sokáig tartott – mintegy 20 évig –, de végrende van értelme annak, hogy azzal is foglalkozzunk, hogyan tudjuk hasznosítani az így megszerzett tudást az oktatás területén.
24.1 A kommunikáció támogatása

A mindennapi munka során számtalanszor előfordul, hogy különféle eseményekről, rendezvényekről stb. kell a tanárokat, diákokat, szülőket tájékoztatni. Ezek lebonyolításához a legtöbb esetben nem áll rendelkezésünkre semmilyen program, alkalmazás, így általában az értesítéseket manuálisan állítjuk össze.

46.ábra: Elektronikus szülő-diák tájékoztatási rendszer
Ez rengeteg időt emészten fel, mondhatjuk, fölöslegesen. Amennyiben megfelelően strukturált módon tároljuk a különféle kapcsolati adatokat, akkor ezek a tevékenységek nagyrészt automatizálhatók. Hogyan kell ezt elképzelni? Nézzünk erre egy egyszerű példát: osztálykirándulást szervezünk, ennek megbeszéléseré szeretnénk megírni a szülőket. Az érintett osztály a 11/C. Küldhetünk erről egy körlevelet az összes szülőnek, és ezzel jelentősen lerövidíthetjük a meghívások elkészítésére fordított időt, azonban mi megkérdeztük év elején, ki szeretne osztálykirándulásra jönni, így csak a ténylegesen érintett diákok született kell értesítenünk. Amennyiben ezeket az adatokat eltároltuk a CRM rendszerünkben, néhány szűrőfeltétel megadásával könnyen összeállítható a címzetelek listája (a CRM terminológiában ez a cél marketing lista). Legegyszerűbb az értesítéseket e-mailben elküldeni, de nem feltétlenül van mindenkinek e-mail címe. Azt, hogy a szülő e-mailben, levélben, vagy telefonon kér értesítést, természetesen már tároltuk a rendszerünkben. Ezek után összeállítjuk a levélsablonokat, hozzákapcsoljuk a marketing listát és egy gombnyomással el is küldhetjük az e-mail üzeneteket. Ahol ez nem lehetséges, mert például a kommunikációs csatorna telefon vagy levél, automatikusan feladatlistákat készíthetünk az érintett kollégák számára, milyen tevékenységeket (telefon, levél) kell elvégeznükn. A válaszüzenetek – és az eseményen való részvétel – rögzítésével a későbbiekben az is felderíthető lesz, hogy például kik azok a szülők, akikkel nehéz kapcsolatot teremteni.

Az úgynevezett adatvezérelt kommunikációs események segítségével a munkatársak közötti információátadás könnyíthető meg. A CRM rendszer képes figyelni meghatározott adatváltozásokat és ezek összefüggéseit. Ezek alapján az érintett személyeknek automatikus üzenet továbbítható. Rendszerüzenet küldhető például annak a munkatársunknak, aki az elmúlt hónapban egy érdemjegyet sem rögzített be, pedig nem volt szabadságon. Nézzünk egy másik példát is: a fizika munkaközösség-vezető szeretné értesülni arról, hogy adott évfolyamon kik azok a tanulók, akik matematikából legalább 4,5-es tanulmányi átlagot értek el, mert szakkört szervez a tantárgyból, és ehhez szeretné megismerni a kapcsolódó tárgyból elért eredményeket.

Természetesen úgy kell a rendszert megtervezni, hogy egyik munkatársunk postaládája se legyen tele automatikusan generált levelekkel... Egyébként a megszokott, rutin munka során feldolgozott adatok változásairól felesleges figyelmeztető üzeneteket ködni, azokra az eseményekre kell figyelni, amelyekre a napi hajtásban nem jut idő.

2.4.2 Üzleti intelligencia megoldások

47.ábra: Adatelemezések, tanulmányi eredmények és egyéb információk elemzése
Az ügyviteli rendszerekhez hasonlóan a CRM is tartalmaz olyan mérhető adatokat, amelyeket felhasználhatunk döntéstámogatáshoz. A hagyományos jelen-téskészítő eszközök (Excel, adatbázis lekérdezések) használata mellett ezért célszerű lehet egy mutatószámrendszerre és teljesítménymutatókra épülő megoldást használni, amely gyors, könnyen áttekinthető információkkal látja el a munkatársakat.

A 26. ábrán látható, hogyan is lehet elképzelni a BI rendszerek által nyújtott grafikus megjelenítést. A számszerűen megjelenített tanulmányi eredmények mellett feltüntettük a trend és teljesítmény mutatókat. A trend jelenleg az általánosan használt mutató: ha a tanuló átlaga tavaly 3,51 volt, az idén 3,7 átlagú tanulmányi eredményt ért el, a trend pozitív; ez természetesen mindenki számára egyértelműen jót jelent.

Fordított esetben kicsit árnyaltabb a kép, nehéz meghatározni, hogy egy negatív trend esetén meddig tart a „még belefér”, és az „itt már tényleg baj van” kategória. Ennek megítélése valószínűleg teljesen szubjektív. Arról nem is beszélve, hogyha ezt megpróbáljuk az összes osztályra, összes diákról és az összes évfolyamra elemezni, akkor az „kézi vezérléssel” kicsit hosszadalmas lesz. Ebben segítenek nekünk az üzleti intelligencia rendszerek.

Nézzük, mit jelölnek a színek!

- **Zöld indikátor:** ebben az esetben az általunk meghatározott szempontrendszer szerint minden rendben, nem kell vele tovább foglalkozni.
- **Sárga indikátor:** azonnali beavatkozást nem igénylő esetet jelez, bár itt már lehet valami probléma akkor, ha ez egy különösen negatív trenddel társul.
- **Piros indikátor:** itt bizony sürgősen be kell avatkozni!

Hogyan is készülnek az indikátork? Egy ilyen „közlekedési lámpa” tulajdonképpen tény- terv összehasonlítás eredménye. A tény oldalon az ábrázolt esetben tanuló (évfolyam, osztály) tényleges tanulmányi eredménye, a terv oldalon pedig egy általunk meghatározott viszonyzám szerepel, azaz a mi elvárásunk. A teljesítménymutató a tényadat és a tervadat hányadosa, ami egy 0,975-höz vagy 1,756-hoz hasonló szám. Ez még mindig nehezen értelmezhető – így, legalább már értelkelhető információ. Első ránézésre is könnyen értelmezhető indikátor akkor lesz belőle, ha ezekhez a teljesítménymutatókhöz %-os megvalósulási értékeket és ehhez kapcsolódó jelöléseket rendelünk, például meghatározzuk, hogy terveink 90%-os megvalósulása zöld indikátort kap, 70-90% között sárgát, 70% alatt pedig pirosat. Természetesen a 120% is zöld jelzést jelent és a 95% is, esetenként más és más trendekkel, ezért ezeket az eredményeket együttesen célszerű elemezni.
Nézzünk egy konkrét példát! Mint igazgató, egyszerűen és gyorsan szeretném megtudni az iskola jelenlegi teljesítményét. Lekérdezem az évfolyamok fő teljesítménymutatóit, és megnyugvással látom, hogy az indikátorok általában zöldek. Ezekkel az évfolyamokkal kapcsolatban nincs teendőm. A pirossal jelölt sorokat azonban szeretném „közelebbről” megvizsgálni, hogy megtaláljám a probléma okát. Mélyebbre tekintve az adatokba azonnal látható, hogy az évfolyamon belül mely osztályokkal kell foglalkoznom, azaz, kik a pirosak. Az adatokat osztály szinten elemezve, az információkat tanulókra bontva kaphatom meg. Itt már ki is derül, hogy kik azok a tanulók, akik miatt az évfolyam piros indikátort kapott. Ha nagyon kíváncsi vagyok, a diákok elektronikus ellenőrző könyvébe is beletekinthetek – ez informatikailag azt jelenti, hogy a nagy egészből úgy mond lefűrtam a legalsó strukturátlan adatszintig. Természetesen a CRM rendszeren keresztül azonnal be is tudok avatkozni, küldhetek e-mail-t például az osztályfőnöknek.

Az évfolyam és osztály szerinti csoportosítást és elemzést természetesen más szempontok szerint is (például tantárgy, tanár, adott osztályban alkalmazott tanterv) végezhetem, ezek az ún. elemzési nézetek, az üzleti intelligencia terminológiában (BI) dimenziók. A megfelelően összeállított elemzési nézetek, teljesítménymutatók és indikátorok segítségével olyan jelentéseket állíthatunk össze, amelyek segítségével szükség esetén azonnal be tudunk avatkozni a folyamatokba.

Összetettebb elemzésekkel összefüggéseket tudunk vizsgálni tantárgyak, diákok, tanárok között, így észrevehetjük azokat az intéző jeleket, ha például a tanulói csoportokat másképp célszerű beosztani, vagy például tanterv változások az előző évben jól teljesítő diákok az idei évben szignifikánsan rosszabban teljesítenek, s így felülvizsgálhatjuk a döntés helyességét.

2.4.3 Veszedelmes viszonyok

A 48. ábrán látható diák-tanár-szülő kapcsolat különösen bonyolult informatikai rendszer nélkül is könnyen áttekinthető. Egy 100 évvel ezelőtti kis falusi környezetben ez valójában így is volt: az egy tanító bácsis, 8 diákos és hozzá tartozó néhány szülőt jelentő kapcsolati háló könnyen fejben tartható, vagy akár beirható egy egyszerű jegyzetfüzetbe.

A mai viszonyokat inkább a 28. ábra közélteti meg. A szülők-tanárok-diákok között számtalan hivatalos és nem hivatalos kapcsolat él, ezeknek van olyan része, amit célszerű lehet egy erre megfelelő rendszerben nyílván-
tartani és szükség esetén használni is. A legtöbb esetben ezeket a kapcsolatokat csak bizonyos mélységgig érdemes rögzíteni: az egyes szülők közötti kapcsolati viszonyok csak néhány esetben lehetnek számunkra fontosak.

Érdekesebbek lehetnek a diákkapcsolatok – bár ezek felderítése legtöbbször nem egyszerű feladat és a mindennapi munka során általában nem is nyújt segítséget, néhány speciális esetet kivéve.

Nézzük először a „hivatalos” kapcsolatok kezelését! Egyszerűen nyilvántarthatjuk a munkatársak (például osztályfőnökök, munkaközösség-vezetők, tanárok, óraadó tanárok), kiemelt szerepet játszó szülők (szülői munkaközösségek tagjai) és diákok (diákönkormányzatok tagjai, vezetői) közötti viszonyokat: ez megkönnyíti a „kommunikációs útvonalak” kialakítását. A rögzített kapcsolati viszonyok segítségével egyszerűen kezelhetők például az egyes eseményekről történő értesítések, az ezek összeállítására fordított idő jelentősen lecsökken.

A CRM és üzleti intelligencia rendszerek együttes használatával figyelemmel kísérhető és összehasonlítható az együtt dolgozó csoportok eredményessége is.

Bár sok szempontból kérdéses a „nem hivatalos” kapcsolatok kezelése, mégis célszerű lehet néhány esetben feltérképezni például a „problémás” diákok kapcsolatait: ezzel talán nagyobb bajok előzhetők meg. Egy nagyobb létszámú iskolában, ahol például kétezer tanuló van, a napi teendők mellett ezeket az információkat képtelenség hatékonynak informatikai támogatás nélkül kezelni.

2.4.4 Életút követés

Mire is gondolunk, ha ezt mondjuk: életút követés? Diákjaink általában másik intézményből érkeznek hozzánk (óvoda, általános iskola, stb.), és tanulmányaikat az esetek többségében nem nálunk fejezik be. Természetesen abban az időszakban, amíg a diáknak megadott intézményükben tanul, viszonylag sok rögzíthető információval rendelkezünk róla. A tanulók életútja azonban ennél sokkal hosszabb, és célszerű lehet erről további adatokat gyűjtenünk, mivel így tudjuk eredményesen
figyelemmel kísérd mind az előzményeket, mind pedig a későbbi tanulmányokat (célzott adatgyűjtés nélkül legfeljebb azt tudhatjuk, felvették-e főiskolára vagy egyetemre), esetleg munkahelyeket, azon belül pozíciókat. A diákok a legtöbb esetben „rábirhatók” az információk átadására, amennyiben ezt nem csak informatikai, hanem „emberi” eszközökkel is támogatjuk (például baráti körök, osztálytalálkozók, rendezvények szervezése). Ezekkel a módszerekkel egy felsőoktatási felvételi eredménynél sokkal, de sokkal hosszabb távú és számunkra hasznosabb adatok is bejuthatnak. Jelenleg egy intézmény legfeljebb azzal tud büszkékedni, hogy a felvételi arány milyen volt az utóbbi években. Arról, hogy egyáltalán elvégezték-e további tanulmányaikat, és hogy később milyen állást találtak, milyen pozícióba kerültek, már nincs információink. Ezen információk birtokában természetesen nem csak szép reklámszövegek születhetnek, de lehetőségünk nyílik arra is, hogy javitsunk oktatási módszereinken, illetve ha kell, változtassunk stratégiánkon.

2.1.5 Összegzés

Elmondhatjuk, hogy itt is, mint az „üzleti világban”, arra használhatjuk a CRM rendszert, hogy időt takarítsunk meg, olyan mélységű összefüggéseket vizsgáljunk, és ehhez kapcsolódóan olyan lépéseket tegyünk bonyolult és időrabló elemzések készítése nélkül, amit hatékony informatikai támogatás nélkül nem tudunk megtenni. Óriási mennyiségű információ áll rendelkezésünkre, amely egy ilyen rendszer nélkül haszontalan. Lássuk meg azt, hogy a sok-sok év alatt összesegyűlt rengeteg adat és tapasztalat hasznossá tehető. Napjainkban az iskolák közötti versenyben – ami ugyanolyan éles, mint az üzleti világban – lépéselőnybe kerülhetünk azzal, ha meg tudjuk tervezni döntéseinket, és olyan stratégiát tudunk kidolgozni, ami versenyképesség tesz minket. Tehetjük mindezt úgy, hogy nem kell a munkatársaknak egy új alkalmazás „filozófiáját” megtanulni, hanem egy barátságos és felhasználóbarát rendszert ismernének meg. A napi munka során egyre inkább beletanulva a rendszer használatába, egyre többet tudva a CRM lehetőségeiről, a válást folyamatként kezelve, fokozatosan állhatunk át egy kor- szerű alkalmazás és módszer használatára.
Felhasznált irodalom

FERENC MAKÓ, ÉVA SZLOVÁK: Development of multimedia competency in teacher training.

http://www2.smarttech.com/st/en-US/Products/Senteo/
http://bandl.hu/hitachi/verdict.html
http://www.avcentrum.hu/webset32.cgi?HighMedia@@HU@@145@@GOOGLEBOT
http://www.bandl.hu/hun/products.php?name=menu_conference&dir=conference&sub=hypermaster&number=10&from=1
http://hu.wikipedia.org/wiki/Projektor
http://www.interaktivtablamegoldasok.info/

The Becta Review 2005, Evidence on the progress of ICT in education
http://files.ictopschool.net/bestanden/bronnen_digitale_generatie/becta_review_feb05.pdfhttp://www.projectorcentre.co.uk

Electronics Department InformationTechnology Branch (2007): Real world IT projects.

http://elisu.gcal.ac.uk/flexiblenmobile.html

Útmutató az európai projektnedzsmenhethez - Jó tanácsok centralizált Socrates projektek koordinátorai részére, Kiadja a Magyar Népföiskolai Társaság, Budapest 2001
http://newsite.tpf.iif.hu/socrates/docs/survkitHU.pdf
3.1 Tartalom

3.1.1 Mi a digitális tananyag?

Kárpáti Andrea

A számítógép képernyőjén megjelenő szöveg nem feltétlenül digitális tananyag, hiába tartalmaz elsajátítandó ismereteket, megoldandó feladatokat. Ahhoz, hogy több legyen egy eredetileg papírra nyomtatott tankönyvnek vagy feladatlapnak, olyan didaktikai megoldásokat (oktatófilm-részletek, interaktív animációk, a szöveget életre keltő hangzó anyagot, a lexikon-szócikknél sokoldalúbb fogalom-magyarazatokat, gyors keresési és eligazodási funkciót és egyéb interaktív felhasználási és visszacsatolási lehetőségeket) kell tartalmaznia, amelyek segítségük a tartalom elsajátítását, hatékonyára és élvezetessé teszik a tanulást. Az ilyen igényes kiviteli és felhasználóbarát szoftverek futtatását lehetővé tevő, megfizethető áru számítógépek a 20. század kilencvenes éveiben jelentek meg az iskolákban.\(^1\)

Ezeket a tananyagokat alkalmazhatjuk a hagyományos tanórának oktatás keretei között, a tanári magyarázat támogatására; a tanóra témájához kapcsolódó, ott-hon, önálló feladatokra; illetve távoktatás jellegű, mentori konzultációval, személyes vagy levelező támogatással segített egyéni tanulásra egy, az interneten elérhető „virtuális iskolában”, azaz e-learning oktatási környezetben is. A digitális tananyagok felhasználása lehet szinkron (egyszerre valamennyi tanuló és tanár személyes részvételével, a tanóra felhasznált információ és az iskolában vagy azon kívül elhívtott és elsajátított ismeret, értékelt dolgozat). Az iskolai számítógépesítés kezdetén azt hittük, afféle trójai falóként fogja bevenni ez a diákok számára ismerős és vonzó eszköz a hagyományos oktatás várfalai közé korszerű módszereket (Kárpáti, 2000). Ma már tapasztalatból tudjuk, a digitális tananyag – hiába tartalmaz innovatív pedagógiai megoldásokat – kiválóan

A századfordulóig, amíg a tanártovábbképzési programokon elsajátíthatták, mire va-lók, a diákokat jutalmazó, óra végi játékos időtöltségéért vagy a tananyag bemutatását színesítő élénkítő illusztrációként alkalmazták az oktató szoftvereket a pedagógusok. Azóta bebizonyosodott, hogy nem egyszerűen új taneszkőzről, hanem a tananyag képi megjelenítésének minőségét – a vizualizációit – alapvetően megújító, az egyénre szabott2 oktatás és gyakorlás, teljesítményértékelés és számonkérés gyakorlatát ennek korszerű elméletéhez közelítő új pedagógiai kultúráról beszélhetünk. A digi-tális tananyagok legelterjedtebb műfajait, melyek ehhez a kultúrához a megvalósítási lehetőségeit megteremtik, a következő részben mutatjuk be. Az iskolai életben felmerülő feladatok szerint csoportosítjuk őket, és olyan termékekkel illusztráljuk a rövid

2Pl. www.kp-lab.org
leírásokat, amelyek vagy már is, legalább részben ingyenesen és magyar nyelven is hozzáférhetők, vagy harmonosan közreadja őket – szintén térítés nélkül – egy, a kidolgozásukkal, kipróbálásukkal foglalkozó európai uniós munkacsoport. Az egyes műfajok megjelölésére gyakran hiányzik még a közhasználatú magyar kifejezés, ezért sokféle fordításban olvashatunk róluk. Hogy egyértelmű legyen, miről szól egy-egy leírás, ilyen esetekben közöljük a műfaj angol elnevezését is.

3.1.2 Műfajok

A műfajokat – akárcsak a művészetterméletben – funkciójuk és tartalmuk szerint osztályozzák, a két szempont relevanciáját többé-kevésbé figyelembe véve. Az alábbi oktatási szoftver-műfajokról lesz szó ebben a részben:

- Önálló ismeretszerzésre szolgáló eszközök
- Oktatási eszközök
- Értékelő eszközök
- Digitális oktató játékok (edutainment)
- Összetett tanulási és / vagy munka-környezetek
- A tanulói teljesítmény rendezett és hiteles bemutató környezete
- Integrált távoktatási keretrendszer

Önálló ismeretszerzésre szolgáló eszköz: szöveges tudástartalmakat tartalmaz, képekkel, hanganyagokkal gazdagítva, sok interaktív elemet beiktatva, az ismeret közlésén, átadásán van a hangsúly, a tanulói kimenettel nem foglalkozik. A tanár aktív jelenlétére a valóságban nincs is szükség, a tanuló önállóan dolgozhat. Az ide tartozó tananyagtípusok a következők:

- **Információs forrás** (*Information resource*): multimediális, interaktív, nem lineáris, néha internet-kimenetű publikáció, amely lehet digitális kép, interaktív animáció, videó, szöveg és hang mint LO (*Learning Object*).
- Digitális lexikon, amely lehet nyomtatott lexikonok internetes megjelenítése vagy szakértő és laikus önkéntesek közös műveként előálló, napról napra változó és bővülő közösségi mű, azaz *wikipédia*. (Ezeket később, a 3.2.4.1 részben bővebben ismertetjük.)
- Digitális szótár vagy tezaurusz – a világyelvenkből találunk ilyet a TA Számítástechnikai Alkalmazási Kutatóintézete (SZTAKI) honlapján (www.sztaki.hu/szotar)
- **Elektronikus könyv** (*e-könyv*), amely eredetileg papírra nyomtatott munkák digitalizált változata. Előnye, hogy keresőrendszeré révén könnyen fellelhetők benne az információk, és az egyes témák között beépített
kapcsolatok: *hiperhivatkozások (hyperlinks)* vezetik az olvasót. Hátránya, hogy a képernyőről olvasni kényelmetlen, s kinyomtatása drága. Sohasem fogja kiszorítani a nyomtatott könyvet, viszont segíti a hozzáférést azoknak, akik megvenni, kikölcsönözni nem tudnak ilyet.

- **Egyéni gyakorló környezet:** pl. egy-egy tudáselemet begyakoroltató feladatok, egy cselekvéssor automatikus végrehajtására kiképző környezet. A szimulált helyzetbeli reflexek később, valódi élethelyzetben aktivizálódnak. A hagyományos képzés kiegészítésére alkalmas gyakorlatok ezek.
- keresőrendszerek,
- programozott tanulási rendszerek,
- oktató CD-k, DVD-k, és videók,
- szimulációs alkalmazások (pl. virtuális laborok),
- tananyagszerzői rendszerek és alkalmazások.
- **Digitális oktató játék (edutainment):** tartalma egy meghatározott műveltségrülethez, ismeretkörhöz, esetleg konkrét tananyaghoz kapcsolódik, módszerei, képi és hangzó megoldásai a számítógépes játékok és könnyűzenei videóképek sajátosságait hordozzák. Versenyezni lehet vele, a játékosok teljesítményét folyamatosan értékelni, büntető és jutalmazó funkciókkal informálja a játékosost és szabályozza játékát, a győztest újabb játéklehetőséggel, dicsérettel jutalmazza.

Oktatási eszköz (a pedagógiai munkát támogató tartalmak): ezeknél az eszközökélnél a visszacsatoló funkció általában nincs beépítve, hiszen ezt a pedagógus adja. Az eszközök tervezésénél határozott módszertani elvek érvényesülnek. A pedagógus általánban jelen van, irányító, demonstráló, figyelemfelkeltő, motiváló, értékelő funkciókat láthat el. A tanulók szerepe néha a hallgatás, tanulmányozás, gyakrabban az aktív részvétel.

- **Digitális tananyagegység** (a szakirodalomban gyakran angol névvel szerepel: *learning object*, rövidítve: LO) A digitális tudásbázisokban (pl. a 3.1.4. részben bemutatandó tananyag-adatbázisokban, a Sulinet Digitális Tudasbázis(SDT) tananyagtárán, és a később ismertetendő, nemzetközi tananyagokat tartalmazó Learning Resource Exchange-ben (LRE) is – a legnagyobb számban ilyen, sokoldalúan felhasználható tananyag-építőkövek vannak.
- **Alkotó eszköz** (*tool*): képek és szövegek alkotását és tananyaggá szerkesztését, illetve már létező digitális tananyagok átalakítását teszi lehetővé. (Pl. a www.movelex.hu illetve a LeMill kollaboratív könyvezettaneshoz készítő lehetőségei, amelyekről a 3.2.1.1 részben lesz bővebben szó.)
○ **Demonstrációs eszköz:** egy jelenség, folyamat részeinek dinamikus bemutatására alkalmas, összetett ábra, szimuláció, hangos szótár, stb.

○ **Tananyag (tutorial, courseware, learning content):** módszertanilag szervezett, gazdag tartalmú, de nem vagy csak kis mértékben változtatható, feladatokat és számonkérési lehetőségeket egyaránt tartalmazó tudásanyag. A digitális tudásbázisokban (pl. a később bemutatandó SDT-ben és LRE-ben is – a számos ilyen, a közös európai kurrikulumhoz² kapcsolódva szerepelnek az egyes tantárgyak vagy műveltségterületek évfolyamok, fejlesztendő kompetenciák vagy pedagógiai módszerek szerint is kereshető tananyagai⁴.

Értékelő eszköz: interaktív feladatbank, tesztelő és/vagy gyakorlást segítő szoftver. A tanár maga is alkothat benne feladatokat, illetve felhasználhatja mások feltöltött tesztjeit. (Pl. www.movelex.hu, www.hotpotatoes.com). A műfaj legigényesebb megoldásairól, az adaptív képességfelmérő- és vizsgakörnyezetekről külön részben szólunk. Valamennyi rendelkezik a következő funkciókkal:

○ Az értékelő rendszerekhez hasonlóan bemért feladatokat, feladatsorokat tartalmazó feladatbank.

○ **Tesztelési felület** bemutató programmal gyakorlásra és a saját felkészültség mérésére.

○ A feladat megoldásának megkezdését segítő, ill. orientáló súgó.

A tanulói teljesítmény rendezett és hiteles bemutató környezete:

○ Saját készítésű bemutató portfólió pl. **saját honlap vagy más erre a célra kialakított publikus virtuális tárterület** – előnye, hogy addig marad fenn, amíg szerzője ezt biztosítani képes, hátránya, hogy kialakítása nehéz és (egyelőre) nem kapcsolható hozzá hitelesítő funkciók.

○ **Digitális portfóliókészítő környezet,** amely kész rovatók és grafikai megformálások sorát kinálja fel, segítségével könnyen és hatásosan mutathatjuk be tanulmányainkat (és ezek hiteles bizonyítványait), illetve terveinket és késő munkáinkat. Az e-portfólióban összekapcsolhatók a produktumok és ezekről az oktatók, munkaadók és a társak, illetve egyéb értékelők véleményei, dijak és egyéb elismerések is.

3. „Közös európai kurrikulumnak” szokás nevezni a nemzeti tantervek közös metszetét, melyet – a nemzetközi tanulási eredménynesség-vizsgálatokat előkészítő összehasonlító elemzések szerint – a legtöbb európai országban kötelező tananyagként oktatnak.

4. Felhasználási módjától függően ide is és az önálló ismeretszerzésre szolgáló eszközök közé is besorolható. Itt demonstrációs jellegű, mint nincs szükség visszacsatolásra, de önálló tanulás esetén annál nagyobb fokú interaktivitást, orientálást, és visszacsatolást igényel.
Virtuális munkaterület: komplex rendszer, amelyben többféle tanulási (vagy munkahelyi együttműködési) lehetőség áll rendelkezésre mind szinkron, mind aszinkron kommunikációit alkalmazva. A tanári és a tanulói szerep is aktiv részvételen alapul, valamint a pedagógus általában moderáló, motiváló és irányító funkcióit is ellát. Az oktatási környezetek lehetnek az iskolai oktatás funkcióit az interneten megjelenítő, **virtuális tanulási terek**, illetve a munkatársak, tanuló-csoportok közötti együttműködést támogató, **kollaboratív oktatási környezetek** (pl. Fle3, LeMill – ld. később). A virtuális tanulási környezetek műfaj-csoportjába tartozó legfontosabb funkcionálisok:

- **Virtuális dokumentumszerver**, amely

- **Tanulásszervezési** és az iskolai életben szükséges kommunikációt elősegítő rendszer: a tanuló adatait rögzíti, oktatási kötelezettségeit és teljesítményét nyilvántartja.

5 A YouSendIt szolgáltatással (a neve magyarul: „Te Küldőd”, s anyanyelvünkön is elérhető), ingeresnén egy-egy, maximum 100 megabájt terjedelmű nagy fájlt továbbíthatunk. Az expressz küldéshez, illetve több, vagy még nagyobb terjedelmű anyagok továbbítása azonban már pénzbe kerül.

Ennek továbbfejlesztett változata az iskolai menedzsment rendszer amely alkalmas az iskola személyzeti és gazdasági folyamatainak dokumentálására, oktatási és pénzügyi tervezésre és jelentéstételre egyaránt.

Tanulásmenedzsment rendszerek: a magyar felsőoktatási intézmények egyre nagyobb számban használnálják, s főleg nem távoktatásra, hanem a jelenléti képzés tömegesedésével az oktatás minőségének javítására. A legelterjedtebb az ingyenes és szabadon fejleszthető Moodle (www.moodle.org), amelynek pedagógusokból és informatikusokból álló, igen aktív, továbbképzéseket is szervező magyar fejlesztői közössége is van (http://moodlemoot.kfrtkf.hu/). Magyar fejlesztésű, fizetős rendszer a CooSpace (http://www.coospace.hu/portal/2.hu.page). Nyugat-Európában és az angolszász világban igen elterjedt távoktatási keretrendszerek, amelyek számos taneszközgyártóval is kapcsolatban álló, ezért angol nyelvű oktatási anyagok bőséges kínálatával rendelkezik pl. a Blackboard (www.blackboard.com), a FirstClass (www.firstclass.com), és a WebCT (www.webct.com). Valamennyiük van magyar nyelvű változata, és számos cikket, tanulmányt is olvashatunk arról, mennyire váltak be ezek az eszközök.

- **Oktatásszervezési eszköz (management tool)**: a diákok haladásának nyomon követése, az iskola pénzügyi, személyzeti, oktatási nyilvántartásainak vezetése, a szülők, oktatásiirányítók tájékoztatása.
- **A gyakorlás, értékelés tere**: célzottan egy általában már korábban megszerzett tudás alkalmazási képességének kialakítására, annak értékelésére szolgál. A főszerep itt a tanulóké, a pedagógus szükség esetén irányit, értékel. A legtöbb program esetében a számítógép a válaszok minőségétől függően határozza meg a további kérdéseket.

A tisztaszoftver programban igényelhető Windows Server operációs rendszer mellé szükségünk lesz még az Microsoft Exchange levelező szerverre, a jobb teljesítmény érdekében az Microsoft SQL adatbázisszerverre, Microsoft Office Sharepoint Serverre és az ahhoz kapcsolódó Sharepoint Learning Kit-re.

Mint tananyagkezelő rendszer (Learning Content Management System, LCMS), alkalmas különféle formátumú digitális tananyagok importálására (SCORM és IMS

7Ebben az írásban mentornak nevezzük az önálló tanulást irányító, segítő pedagógust, aki az internet alapú távoktatási környezetben - vagy a jelenléti oktatást támogató, virtuális oktatás térben - elektronikus levelezéssel, fórum-beszélgetéssel, a beadott feladatok korrekciójaival járul hozzá az egyéni képzés sikerehez. A facilitátornak lényegében ugyanazt a szerekpért látja el, de magatartását inkább jellemzi a támogató-segítő, mint az oktató szándék.
8A .NET a Microsoft integrált fejlesztőeszköze. (http://msdn.microsoft.com/vstudio/)
9A .NET a Microsoft web-szolgáltatás stratégiája, ami lehetővé teszi információ, emberek, rendszerek és eszközök szoftveres összekapcsolását. (http://www.microsoft.com/net/basics.mspx)
10Nagyobb, 1000 tanulónál többet oktató iskolák kiszolgálásához egy server nem elegendő. Elosztott megoldások tervezésében a Microsoft-partnerek állnak rendelkezésükre.
kompaktilis), tehát a tanárok használhatják benne korábban fejlesztett tananyaga-
kat és a Sulinet Digitális Tudásbázis elemeit is. Lehetőség van itt saját tananyag-
ok szerkesztésére és megosztására, hagyományos módon vagy automatikusan
javítható feladatok, tesztek létrehozására is.

Mint tanulásszervezési rendszer (Learning Management System, LMS) a tan-
agyagokat és teszteket, órarendeket, osztálynévsorokat és tanulói adatokat ké-
pes az egyes tanárokkhoz által a tanulóknak rendelni és a tesztek automatikus
(elő)javítását elvégezni.

Mint együttműködést segítő tanulási környezet, a tanítási-tanulási folyamat kül-
önböző szereplőinek kommunikációját segíti elő. Ennek érdekében fórum, doku-
mentum- és képtár, felmérés, valamint levelező szolgáltatást nyújt

A rendszer minden szolgáltatása a böngészőböl kereshető el. A nyitó ol-
dalon bejelentkezve, a rendszer felismeri, milyen jogosultsággal rendelkezünk.
A diákok csak saját oldalukat és az iskola közösségi oldalait láthatják, a szülők
gyermekük eredményeit és a számukra küldött iskolai közleményeket. A tanárok
előtt megnyilik saját munkaterületük és minden tanítványuk oldala, az adminisztrá-
tor szerepben belépők pedig az MLG valamennyi adatába betekinthatnak.
Az elektronikus tananyagok kidolgozására fordított erőforrások, az internetes közreadással elérhető, a hagyományos könyverjesztésnél nagyságrendekkel népszebb felhasználói tábornak indokolt, hogy ezek minősítése éppolyan jól szabályozott és kötelező megmérettetés legyen, mint a nyomtatott tananyagoké. Ezt a feladatot azonban az eddigi tapasztalatok szerint a hagyományos tananyagok lektorálását végző szakemberek nem tudják teljes mértékben megoldani, ugyanis elektronikus tananyagok esetében a szaktudományi hitelesség és oktathatóság szempontjai mellett számos speciális, informatikai jártasságot igénylő szempontot is figyelembe kell venni. Magyarországon a digitális tananyagok minősítését, lektorálását a gyártók által alkalmazott szakértők, tananyagbizottságok és időszaki zsűrik végzik. Ezek közül legjelentősebbek az Oktatási és Kulturális Minisztérium Országos Köznevelési Tanácsának kerete között működő Digitális Tananyag Minősítő Bizottság, a HUNDIDAC (Magyar Taneszközgyártók, Forgalmazók és Felhasználók Szövetsége, http://hundidac.uw.hu/) évenkénti szoftvervizsuri. Tervezve van egy új bizottság létrehozása is, amely a Calderoni Projekt keretében fogja összegyűjteni és értékelni a digitális tananyagokat (NÁDASI, 2008).

Az értékítéleteket a bírálat módja befolyásolhatja. Egészen különböző eredményre juthat egy oktatásielméleti szakember, aki saját számítógépén futtatja az oktatási anyagot, mint egy gyakorló tanár, aki az osztályban történő kipróbálás során minősít, vagy a szoftver-dijakat odaitélő zsűrik, melyek kereskedelmi bemutatók, vásárokat kapcsán értékelik a benevezett termékeket néhány felnőtt használót érintő kipróbálás és a dokumentáció elolvasása alapján. Ez utóbbiak főként a programozás és a design minőségéről tudnak bírálatot mondani, a pedagógiai használhatóságról kevésbé. Hiába kérünk fel azonban egy gyakorló tanárt arra, hogy a gép előtt ülve, egymagában próbálja eldönteni, mennyire hasznos lenne egy-egy eszköz a tanórán, ez a vélemény – bár egészen más szempontokat vesz számba, mint a programozó vagy esztéta – ismét csak feltételezésekre alapul. A digitális tananyagok és oktatási környezetek esetében olyan új oktatási eszkökről van szó, ahol a kísérletezés az értékelés elmaradhatatlan része kell, hogy legyen.
Az alábbiakban azokat a tulajdonságokat soroljuk fel, melyeket egy nemzetközi tananyag-értékelő kísérlet, a CALIBRATE projekt (calibrate.eun.org) gyakorló pedagógus résztvevői a legfontosabbnak tartottak. (A digitális tananyagok és oktatási környezetek tervezése során végzett értékelő munkáról és ennek eredményeiről vó. Kárpáti, 2008.)

- **Sok és jó minőségű illusztrációt tartalmaznak** (képeket, ábrákat, animációkat, videókat).
- **Interaktívak, egyszerűek, könnyen áttekinthető szerkezetűek**, tehát a tanár vagy diák rövid ismerkedés után képes őket testre szabni és használni.
- **Ha sok illusztrációt, beállítható szimulációt vagy más interaktív lehetőséget tartalmaz a tananyag, a szaktanár akkor is jó hasznát veszi, ha nem magyar nyelvű. Ha a külföldi digitális tartalom közvetítő nyelve világnyelv vagy minél több országban oktatott idegen nyelv, a nyelvoktatásban is hasznosítható.**
- **Grafikus megjelenítésükkel és egyéb vizualizációs megoldásaikkal is tanítanak.** Fontos, hogy a központi gondolatok, kulcsszavak egyértelműen különnüljenek el a kevésbé fontos tananyagrészektől. Különösen preferált a jelentéshordozó színkódok használata.
- **A szemléletetés interaktív és több módszert használ: képek, ábrák, grafikonok, hangfelvételek, videók, animációk stb. segítik a szemléltetést, a sokoldalú ismeretszerzést.**
- **A tananyaghoz részletes ismertető tartozik**, amely nem csak a technikai részleteket mutatja be. A tananyag sikeres elvégzéséhez szükséges előtanulmányok, előismeretek, kompetenciák, illetve az ajánlott tanulói életkor is szerepel a tananyag bevezetőjében.
- **A tananyag szövegének stílusa világos, olvasmányos, de tömör.** Megfelelő nyelvekettől, tehát nem gyügyőg, de nem is halmozza az adatokat, idegen szavakat, még nem tanult kifejezéseket. A szöveg nyelve alkalmazkodik az előzetesen megadott, ajánlott életkorhoz és a szükségesnek ítélt (a tananyag ismertetőjében hangsúlyosan szereplő) előtanulmányokhoz, s csak ezek szerint alkalmaz szakszavakat, összetett mondatokat, jelképes kifejezéseket.
- **Hasznos, ha a tananyag egyes területein más tantárgyakkal vagy tananyagokkal való kapcsolódási pontokat is megjelölünk, így segíthetjük elő a globálisabb megértést.**
Ha a téma jellege úgy kívánja (és általában megkívánja), van tudásellenőrző teszt a tananyagban – mégpedig nem csak a legvégén, hanem blokkkonként, a tananyagba ágyazva is. A kitöltés után a megoldások, illetve a helyes válaszok száma vált megismertté.

Könnyen hozzáférhető kiegészítő anyagokat is tartalmaz: linkeket, hivatkozásokat, forrásokat, hogy az érdeklődőknek legyen lehetőségük alaposabban elmélyedni a témakörben.

A tananyag felépítése interaktív. Ez azt jelenti, hogy a tananyagban való haladás során, a tanulási út megállapításánál a diák aktív közreműködik, magyarázó vagy kapcsolódó témához vezető linkekre kattintathat, szavakat kereshet ki a lexikonból, forrásoknak nézhet utána, teszteket tölthet ki.

Végül lényeges a felhasználás egyszerűsége, illetve a szükséges technikai paraméterek ismertetése.

3.1.4 Tananyag-adatbázisok

A digitális tananyagok kidolgozása nem olcsó, hosszú távon mégis költséghatékony, hiszen apróbb-nagyobb módosítással évekig használható egy-egy digitális tankönyv, ezek töltethetek ki az interneten megnézhető munkafüzeteket, hogy aztán – egymáshoz és önmagukhoz viszonyított eredmény sor alapján – mindjárt képet is alkothatnak tudásukról. A szabad forráskódú (open source) oktatási szoftvereket számos oktatási intézmény, kulturális és társadalmi szervezet (köztük az UNESCO, vó. www.unesco.org/opensource) ingyenesen kínálja. Így egy jelentős költségű fejlesztés virtuálisan milliókhoz juthat el, s egy tanulóra vetített költsége végül fillérekben mérhető. A tananya-gok a legjobban akkor hasznosulnak, ha ilyen tananyag-adatbázisokban, rendszererezve, előminősítve állnak rendelkezésre. Még könnyebben a tananyagokból választani szándékozó oktató vagy tanuló dolga, ha ugyanarra a témakörre többféle digitális tananyagot kínál a gyűjtemény, s így az igényeinek (tanítási, illetve tanulási stílusához, képzettségi színvonalához, kulturális sajátosságaihoz stb.) leginkább megfelelő változatot választhatja.

Az SDT szolgáltatásai:

- Digitális tananyagok összegyűjtése, majd közreadása (szükség szerint tartalmi és technikai korrekciók után),
- Új tananyagok létrejöttének elősegítése pályázatokkal,
- Tananyagkezelő keretrendszerben a tananyagok, tananyagelemekek és a hozzájuk kapcsolódó módszertani ötletek, kipróbálási tapasztalatok elérhetővé tétele minden hazai és határon túli pedagógus, szülő és diák számára.

Jelenleg (2008 nyara) főként a 7-12. évfolyamon tanulóknak és tanáraiknak találhatók tananyagok a portálon, az 1-4. évfolyamok részére pedig még nem nyílt meg a tananyagtár. A minőségellenőrzésen és szerkesztésen átesett tananyagok sokrétűen alkalmazzák a multimédia adta lehetőségeket, melyek a hatékony szemléltetési lehetőségeknek köszönhetően megkönnyítik a megértést (Hunya, 2006). A tananyagok legnagyobb része tanórai használatra készült, a tanár az osztályteremben projektoron vagy interaktív táblán kivetítve, számítógépes labor gépeire irányítva használhatja fel őket új ismereteik bemutatására és a már tanultak begyakoroltságára. A tananyagok kisebb hányada kifejezetten a tanulóknak készült, önálló felhasználásra, tanórán kívüli tanulásra is alkalmas. Ezek a tananyagok a tanulók képességei szerinti beállításokat tesznek lehetővé, s így az egyéni képességekre szabott alkalmazásra is mód nyilik. A tanári és tanulói digitális tudásforrások összehangolt használatával a tanulás bizonyítottan magasabb színvonal és hatékonysággal valósul meg, még hátrányos szociális helyzetű tanulói csoportokban is (Kárpáti és Molnár, 2005).

A portál stratégiai célja a munkaerő-piaci igényeknek megfelelő tartalmak létrehozása, illetve a tanulók felkészítése az élethosszig tartó tanulásra (life-long learning, LLL). Ez a paradigma, amely a munkaerő alkalmazkodóképességét támgatja, az Európai Unió 2010-ig tartó oktatásfejlesztési programjának központi eleme. A legátlfogóbb fejlesztési cél a közoktatás minél több tantárgya kötelező törzsanyágának lefedése digitális tartalmakkal. A tananyagok az alábbi két jellemző köré szerveződnek: újrafelhasználhatóság és értékállóság. Ez utóbbi technikai értelemben azt jelenti, hogy a tananyagok felhasználhatósága ne szűnjön meg a technika fejlődésével, az újabb és újabb operációs rendszerek megjelenése, illetve az Office verziófrissítések ne befolyásolják a tananyagokat. (Az SDT felhasználóinak tapasztalatairól vő. Hunya, 2006.)

Az SDT kezdőlapjáról a Nemzeti Alaptaentervnek megfelelő műveltségterületek témaköreire, a tallózás vagy a keresés ikonra, valamint egyéb, az oldal szerkesztői által ajánlott hivatkozásokra kattinthatunk. A szerkesztők tananyagegyésnek nevezik a több tananyagelemből felépülő, ezeket valamely kiválasztott szempont
szerinti elrendezésben közlő tananyagtipusokat, melyeket a portálról letölthetünk, ezek a következők: tanulási program, tanítási program, foglalkozás, lap, tevékenységek (kísérlet, feladat, példa), program, gyűjtemény, téma, fogalomtár, tananyagvázlat, foglalkozásvázlat, tesztfeladat, tanmenet, tananyagelemekek tára. A letöltött tananyagok felhasználásán túl lehetőség van új tananyagelemekek létrehozására, illetve módosítására vagy szerkesztésére is. A tanárok vagy egyéb érdeklődők által írt saját tananyag publikussá tételéhez a tananyagelemekek szigorú szempontrendszernek kell megfelelnie, melyet az SDT Felhasználói Kézikönyv (2006) részletez. A portálon található tantervek (NAT, kerettanterv, programterv vagy modultanterv) az oktatási és nevelési célok gyűjteményével segítik a tanárokat abban, hogy minél hatékonyabban alakítsák ki óraterveiket, illetve ellenőrizhessék hosszabb távú pedagógiai céljaikat.

Az SDT objektum alapú tartalomkezelő rendszer. Az objektumok elemi tartalmi egységek, tananyagelemekek: szöveg (A), kép (), mozgókép (), animáció (), hang (), linkek (), tesztfeladatok (), gyűjtemények () stb. Ezekből épül fel az SDT lap (). Ez valójában egy html oldalhoz (egy webes böngésző által
megjelenített képernyő tartalomhoz) hasonlítható. Több lap alkot egy hagyományos tanóra időkeretének megfelelő SDT foglalkozást. (53. ábra) A foglalkozásokhoz pedig utmutatók, módszertani segédletek kapcsolódnak (mennyi ideig tart, milyen készségeket fejlesz, stb.) Az összeállított foglalkozásokat pedig téma kárba lehet csoportosítani, melyek témaköröket alkotnak. A fogalomtár egy foglalkozás fogalmait gyűjti össze, a fogalomgráf pedig logikai összefüggésben ábrázolja ezeket.

Az SDT-ben kétféle módon kereshetjük meg a számunkra szükséges tartalmat. A bal oldalon megjelenő tartalomjegyzékre („tallózófa”) kattintva csakúgy, mint a hagyományos keresőgombbal, részletes keresést végezhetünk, ha egészen pontosan tudjuk, milyen tananyagra van szükségünk, de épp nem találjuk meg, amit egy-egy osztály számára, adott témakörben keresünk. A Sulinet Digitális Tuddásbázis jelenleg három tevékenység típusú objektumot támogat, ezek: kísérlet, feladat és példa. A tananyelemekhez sok esetben tartozik hivatkozás-, illetve linkgyűjtemény, mely nemcsak a tanárnak lehet hasznos, hanem a tanulók érdeklődésének felkeltését is szolgálja.

Módszertani segítséget adnak még a rendszerbe nagy számban feltöltött óravázlatok, melyek az itt fellelhető más tananyelemek tanórai kereteken belül történő felhasználására nyújtanak ajánlást, és megadják a különböző feladatok időkereteit, illetve – az SDT irányelvei szerint - az igényelt előzetes ismereteket, valamint az alkalmazás technikai feltételeit is. 2003-ban OM és az IHM tizezer

53.ábra: Az SDT tananyagok felépítése
pedagógus részére biztosított huszonkét modulból álló, ingyenes képzést, és azóta is, minden évben igen nagyszámú pedagógus jut ilyen lehetőséghez. Az SDT felhasználását segíti elő az a 30 órás pedagógus-továbbképző tanfolyam, melyen az EDUCATIO Kht. kifejezetten az SDT tananyagainak felhasználására készíti fel a jelentkezőket. Mindezek ellenére az oktatási informatikai eszközöket rendszeresen használó pedagógusok száma csak szerény mértékben nő (Hunya, 2007).

A CALIBRATE három korábbi tananyagfejlesztő és – megosztó nemzetközi projektre épül (CELEBRATE13, VALNET, ITCOLE14), amelyek az Euópai Bizottság Ötödik Keretprogramjának részeként valósultak meg.

A CALIBRATE szorosan kapcsolódik a MELT Projekthez15, amelynek vezetője szintén az Euópai Iskolai Hálózat (European Schoolnet16, EUN). A CALIBRATE Projekt keretein belül egy új euópai digitális tananyag-adatbázis kiépítése kezdődött el (Learning Resource Exchange, LRE), amely újabb, immár a magánszektorból is erékező, ingyenes használatba adott több tízezer tananyagelemmel bővült. A CALIBRATE Projektben kiemelt feladat volt a kezelő felület megtervezése és kipróbálása, amelyen keresztül hozzáférhetőek a hét országból érkezett17, külön-

12 Ausztria, Belgium, Csehország, Észtország, Magyarország, Litvánia, Lengyelország és Szlovénia
13 A Celebrate az Euópai Iskolahálózat által koordinált, az Euópai Unió Információs Társadalom Programja által pályázati úton finanszírozott, 2004 novemberében záruló projekt, melyben Magyarország digitális tananyagok fejlesztésével, valamint a tananyagok tanórai alkalmazásával vett részt.
14 Az European Schoolnet kezdeményezésével létrejött ITCOLE and VALNET projekt, melynek fókuszában a számítógéppel segített kollaboratív tanítás – tanulás áll. A projekt magyar résztvevője a Sulinet Programiroda volt.
15 MELT projekt weboldala: http://info.melt-project.eu/ww/en/pub/melt_project/about.htm (magyar résztvevője nincs)
16 Euópai Iskolahálózat (EUN), az Euópai Unió számítógépes oktatási hálózata
17 A nyolcadik ország, Szlovénia röviddél a szerződés aláírása után kilépett.
bözö nyelvű és formátumú digitális tananyagok. A projekt közvetett célja annak kipróbálása volt, hogy a több európai nyelven íródott tananyagokat lehet-e, ha igen, hogyan és milyen hatékonysággal hasznosíthatjuk eltérő anyanyelvű országokban. Az oldalakon a navigáció egyszerű. A fejléc lehetőséget ad a nyelv megválasztására. 18 Minden oldal jobb-felső részén három ikon szolgál arra, hogy a Főoldalra, a Keresés szakaszhoz vagy a Kedvencekhez jusson a felhasználó. A főoldalon gyorslink található a projekthez kapcsolódó tananyag-szerkesztő portál (LeMiLL, részletesebben bemutatva a 3.2.1.1 fejezetben) legújabban feltöltött tananyagaira. A kezdőoldal bal felső részében kedvenceknek jelölt tananyagainkhoz férhetünk hozzá, saját magunk által készített óratervet tölthetünk fel, illetve a tananyag-adatbázisban található tananyagokat minősíthetjük, értékelhetjük.

A kezdőlap jobb oldali hasábja többek között a háttér-információk gyors megjelenítését szolgálja, magáról a CALIBRATE Projektről, az LRE oldal különböző funkcióiról, bemutat óraterveket, melyek azt példázzák, hogy milyen formátumú és részletességű óratervet várunk el az adatbázisba való feltöltés esetén. Itt szerepelnek az egyes országok digitális tananyag-kultúráját bemutató összefoglalók is. Ugyanebben a hasábban, az oldal felső részén található meg a portál több elemből álló segédlete. Itt találunk oktatóvideókat, leírásokat éppúgy, mint válaszokat

54. ábra: az LRE képernyőképe

18 A választható nyelvek a következők: cseh, német, angol, ész, finn, magyar, litván, holland, lengyel és szlovén.
A 21. SZÁZAD ISKOLÁJA

a gyakran ismételt kérdésekre. A lap közepén lévő menüben a felhasználó azonnal kereshet, vagy böngészhet a tananyagok között. A legnépszerűbb tantárgyak feliratai már a kezdőlapon megjelennek, így a tantárgyak szerinti keresés egyetlen kattintással megvalósulhat. A többi, kevesebb tananyagot tartalmazó tantárgy kínálatából a több feliratra kattintva vállogathatunk. Összesen 27 tantárgyhoz találhatók tananyagok.

Néhány ország¹⁹ a különböző tantárgyakban és életkorokban megszerzendő kompetenciáit is tartalmazó tanterve is megtalálható a kezdőlapról, ezáltal megkönnyítve a pedagógusok munkáját.

Közvetlenül a kezdőoldalon általunk beírt kulcsszó szerint is kereshetünk, illetve a leggyakrabban beírt kulcsszavak felirataira kattintva is; továbbá a részletes kereső feliratra kattintva elnavigálhatjuk magunkat a többféle szempont szerinti keresés oldalára (ez az oldal megegyezik azzal, mintha az oldal fejlécén található keresés ikonra kattintottunk volna). Ezek a lehetséges szempontok: szabadszavas keresés, tantárgy, korosztály, segédanyag típusa, nyelv, szolgáltató. Ez utóbbi szempontokat tetszés szerint kombinálhatjuk, hogy a számunkra legmegfelelőbb tananyagokat kaphassuk meg. A keresés oldal tetején két funkció közül választhatunk: normál keresés vagy személyre szabott keresés. Ez utóbbi az áttekinthetőség érdekében nem listáz ki minden tananyagot, amelyet a normál keresés megtette, hanem csak a keresési feltételeknek és a személyes felhasználói profil beállításainak (érdeklődési kör, beszélt nyelvek) megfelelőbb megfelelőeket.

A tananyagok listázása (a kereső által megtalált tananyagok mennyiségétől függően) viszonylag lassan történik és sajnos nem is teljes mértékben felhasználóbarát abban az értelemben, hogy a tananyagokat blokkkonként listázza a rendszer, így a felhasználónak a keresés elindítása után nincs információja arról, hogy pontosan mikor fejeződik be a keresés, illetve befejeződött-e már.

A tananyagok listázása különálló oldalakon történik, oldalanként 20 találattal. A találatoknál olvasható a tananyag címe, a témája, összefoglalójának eleje, a nyelve, a célcsoport, valamint vagy az eddigi minősítések átlaga, vagy a minősítés felirat, ahol saját magunk minősíthetjük a tananyagot. Minden tananyagnál ki van írva a további részletek felirat, melyre kattintva a tananyag témája jelenik meg teljes hosszában, a tananyaghoz megadott kulcsszavak, illetve a további részletek-re kattintva egy külön ablakban megjelenne a tananyag egyéb adatai (többek között egy hosszabb terjedelmű leírás a tananyagról, hivatkozások, illetve az ajánlott oktatási környezet).

A CALIBRATE-ben rendelkezésre álló tartalom tananyagelemek és tananyagok

¹⁹A következő országoknak érhető el a tantárgyankénti tanterve: Ausztria, Belgium, Csehország, Lengyelország.
formájában van tárolva. A tananyagelemek különálló multimédiás egységek (őszeszetevők), amelyek a tananyagok megalkotására, majd színesítésére, gazdagítására használhatók. Ilyenek a szövegelemek, hangok, képek, grafikák, mozgóköpek, amelyek önmagukban, vagy gyűjteményekbe rendezve találhatók meg a tananyagértárban. A tananyagok általában többféle tananyagelemből álló tartalmak, melyek akár a puszta szöveges dokumentumoktól a bonyolult webes projektekig, tanulási modulokig is terjedhetnek. A Kedvencek című alatt tárolható a felhasználó által kiválasztott tananyag, melyet saját kulcsszó megjelölésével saját területére is „elrejthet”, amelyhez könnyen hozzáfér és ahol saját nézőpont szerint rendezheti. Ez tulajdonképpen egyfajta könyvelőként funkcionál. Lehetőség van a tananyagok minősítésére, értékelésére is, mely hasznos információul szolgálhat a tananyag későbbi felhasználóinak. Sajnos azonban ez az információ csak a minősítés megírásának nyelvén látható.

Hét ország 280 tanára végezte a fejlesztéssel párhuzamosan a keretrendszer egyes funkcióinak értékelését, s közben minősítették a feltöltött tananyagokat is. (A kipróbálás tapasztalatairól részletesen: Kárpáti, 2008.) A LRE-ben tárolt tananyagokat vagy tananyagelemekeket részben a projektben részt vevő országok Oktatási Minisztériumai szolgálatják, részben az European Schoolnet. Az LRE-n keresztül a felhasználók megoszthatják óraterveket a többi felhasználóval.

3.1.5.1 Pedagógiai szempontok

Az elektronikus tananyagok megtervezésekor a legelső lépésként, hasonlóan a hagyományos tananyagokhoz, a nevelési és didaktikai célokat kell részletesen meghatározni. Ennek ismeretében a következő lépés a követelményrendszer kiválasztása.
A 21. SZÁZAD ISKOLÁJA

A jártaasságok elsajátítását gyakoroltató feladatokon keresztül tudjuk támogatni. A tudatos, illetve az automatikus problémamegoldás közötti átmenet a gyakorlás-sal gyorsíthető fel. A készségszintű feladatmegoldásnál a cselekvések már automatizálódnak, kialakulnak a tudatos és szilárd ismeretek, minimális külső információ kell azok végrehajtásához.

A tanuló céljainak és igényeinek megfelelő legyen az elektronikus tananyag. Az érdeklődés felkeltése szempontjából, fontos az oktatni kívánt információ vonzó megjelenítése. Ebben segítség lehet a felhasználói célcsoport által közkédvelt, ismert vagy elismert személy, mese- vagy állatfigura aktív szerepe képes megoldását tartalmazni. Lényeges szempont, hogy a szoftver a felhasználó szemszögéből közelítsé meg a témát, hiszen a tanulás csak akkor lehet hatékony, ha a tanulási folyamat során a tanuló figyelmét folyamatosan a tárgyra tudjuk irányítani. A megjelenítés konkrét célja nem más, mint egy jól irányzott reklám, vagyis eladni a terméket – az oktatószoftverben található tudást – úgy, hogy a vevő felhasználó-központú tervezés. Egy multimédiás tananyag feldolgozására a felhasználónak lehetősége van a kommunikációra, a dolgok menetébe történő beavatkozásra, feladatmegoldásra és kérdéssel a felkészüléséhez és feldolgozásához. Másrészt birkózásban légyen azoknak az alapvető médiatechnológiai ismereteknek, amelyek elengedhetetlenek magának az elektronikus tananyagnak a kezeléséhez pl. az alapvető számítógép és internet használatával a web alapú tananyagok esetén.

A felhasználó önállóan tudja feldolgozni a tananyagot, amelynek előfeltétele, hogy a tanuló rendelkezzen azzal az előzetes tudással, amely szükséges az új anyag megértéséhez és feldolgozásához. Másrészt birkózásban légyen azoknak az alapvető médiatechnológiai ismereteknek, amelyek elengedhetetlenek magának az elektronikus tananyagnak a kezeléséhez pl. az alapvető számítógép és internet használatával a web alapú tananyagok esetén.

A multimédiás tananyag feldolgozása során a felhasználónak lehetősége van a kommunikációra, a dolgok menetébe történő beavatkozásra, feladatmegoldásra és kérdéssel a felkészüléséhez és feldolgozásához. A felhasználó komfortérzetét növeli, ha a szükséges információkat könnyen megtalálja, a feladatok megfogalmazása egyértelmű, egyszerű a program kezelése, beavatkozhat a tanulás folyamatába, és választhat az egyes feladatok és feladói utak között A multimédiás oktatószoftver, a tartalmi informatív részén kívül a színei, elrendezése, anyagminősége, kreativitása, egyszóval a felhasználó-centrikus vizuál ergonómia miatt is kedvelt vált az oktatóprogram támogassa a különböző felkészülési szintű tanulókat a felhasználásban. A kevésbé felkészült, kevesebb előismerettel rendelkező tanulók számára is érthető legyen a tananyag, ugyanakkor az anyagot már részben ismerők számára is tudjón újdonsággal szolgálni, számukra is legyen izgalmas a feldolgozás.
A tanulási folyamatban *működjön visszacsatolás, tegye lehetővé a megerősítést és a visszakeresést*. A fejezetek végén biztosítható kell, hogy a megtanult tudásanyag megértését ellenőrizzük. Ezzel a multimédia lehetőségeit kihasználva, megfelelő visszacsatolást adhatunk az addig elvégzett munkáról. A jó feladatmegoldás esetén pozitívan hat a felhasználóra, ha alkalmanként dicséretben részesül, és ezáltal megfelelő módon motiváljuk.

Az oktatóprogram elengedhetetlen része az eredmények értékelése és elemzése, az utolsó tananyag befogadása után található tudáspróba. E nélkül is lehet oktatóprogramot készíteni, viszont úgy elveszti értelmét a programba fektetett energia. Az oktató ezzel tudja ellenőrizni, hogy mennyire volt sikeres a tanulási folyamat. A tanár is tudja követni, hogy a hallgató mennyi időt töltött a programmal és meddig jutott el abban, vagyában vagy az ellenőrizhető, hogy milyen eredménnyel végezte el a tananyag végén található tesztet. A feladatsoroknak több fajtája létezik, de a leggyakrabban elterjedt a feleletválasztós kérdéssorozat. A tudáspróba kiértékelése a legfontosabb szempont a programban. A hallgatóknak visszajelzést kell kapnia a programtól, hogy megfelelő-e a tudása, és ha hiányos, akkor meg kell jelölnie, hogy melyik téma-körhöz kell visszalépnie, hogy azt milyen módon megjegyezheti. Ezzel megkönnyíti a diákok dolgát is a program, mivel célirányosan rámutat a hiányosságokra, és a tökéletes tudásra ösztönzi őket.

3.1.5.2 Pszichológiai szempontok

Alkalmazzunk elágazásokat a programban, a gondolkodás fejlesztése érdekében. „A konstruktív pedagógia felfogása szerint a megszerzett és a megértés révén rendszerbe foglalt tudás, valamint a gondolkodás meghatározó szerepet játszik a problémamegoldás során” (Tóth P. 2005, 2007). Az elágazásos programoknál a tanulók több úton is bejárhatják a tananyagot, pl. ha a tanuló elront egy tesztet, ahol a kérdésre több válaszlehetőség van, akkor vissza lehet őt vezetni egy előző tananyagra, vagy a tananyag bármely más pontjára, ahol ezzel kapcsolatban van további információ.

A motiváció a hatékony tanulás egyik legfontosabb feltétele. A motiváció belsei játékerőt képez, mely a felmerülő problémák és nehézségek ellenére is fenntarja a tanuláshoz szükséges aktivitást. A tanulási kedvet számos tényező befolyásolhatja.

- **A tanulási feladat természetete:** kötelező vagy szabadon választott, érdekes vagy unalmas stb.
- **A tanulók egyéni jellemzői:** képességek szintje és a teljesítményre adott visszajelzés, szülői elvárások, kiegyensúlyozottság, versenyszéllem stb.
Nagyon fontos, hogy felkeltsük a tanulók figyelmét, és tudjuk fenntartani az érdeklődést, mert akkor sokkal hatékonyabbá válók a tanulás. Ha sikerül felkelteni az érdeklődésüket, akkor „kivánccsian” fogják majd várni az újabb és újabb anyag-részeket. Az érdeklődést fel lehet kelteni animációkkal, képekkel, videókkal és a különböző színek használatával is.

Az interaktív multimédia rendszerek alkalmasak arra, hogy segítségükkel a hatékony tudás megszerzéséhez szükséges feltételeket megteremtsük. Lehetőséges a tanulási környezet változatos és inspiráló kialakításának elősegítése, a szituatív tanulás feltételrendszerének biztosítása. A programok interaktivitása a tanulók sokirányú tevékenységét teszi lehetővé, ez kitájítja a tanulási stratégiáját és a tanulás során szerezhető tapasztalatok lehetőségét (Komenczi B. 1997).

A tanulás hatékonyságának növelése érdekében az oktatóprogram többféle módon nyújtson segítséget. A multimédia tananyagok különböző módon adhatnak támogatást a felhasználónak. Alkalmazhatunk fogalommagyarázatokat, akár a szövegbe építve pl. felugró ablakokkal, vagy hiperlinkekkel utalva a további részletes ismeretekre, vagy állandóan elérhető szószedetekkel segíthetjük az új fogalmak és szabályok megértését.

3.1.5.3 Tartalmi szempontok

Az elektronikus tanulás egyik legfontosabb előnye, hogy folyamatosan naprakész tudást biztosíthat a korszerű tananyagok feldolgozásával.

A multimédia tananyag nem elektronikus tankönyv, annak tartalmaznia kell szemléltetést és szimulációt. Fontos elvárás, hogy ne legyen sok, egybefüggő szöveg, hanem azt megfelelő gyakorisággal megszakítsuk valamilyen szemléletétessel, hanggal, képpel, videóval vagy animációval. Természetesen óvatosan kell bánni a szemléltető eszközök mennyiségével, ezt sem szabad túlzásba vinni, mert akkor elveszíthetjük eredeti célunkat.

A programba beágyazott média legyen megfelelő minőségű és jól áttekinthető. Egy oktatóprogram célja az, hogy a tanuló külső segítség nélkül tudjon felkészülni, tehát mindennek jól érthetőnek kell lennie a programon belül. Fontos szempont, hogy valósághű szimulációkat alkalmazzunk.

Az oktatónagynak ne tartalmazzon ellentmondást, szakmailag kifogástalan legyen. Az ellentmondások elkerülése érdekében fontos a szabatos megfogalmazás és az ismert szavak, egyértelmű fogalmak használata. A megvalósítás során kerüljük el:

* A logikai következtetéségeket:
 - Ne törjünk meg az egyenes vonalvezetést!
 - Új fogalomra az előző lezárása után térjünk át, és kapcsoljuk az előzőhöz!
A fogalmazásbeli következetlenségeket:
- A mondatokat fejezzük be!
- A mondaton belül ne helyesbitsünk, pontosítsunk!
- A feltett kérdéseket válaszoljuk meg!
- A határozatlan, semmitmondó megfogalmazásokat: pl. nem túl fontos, de azért elmondom!
- A bizonytalanságot a közlésben: ne használjuk a valahol, talán, nem tudom pontosan, nem vagyok benne biztos kifejezéseket!
- A töltelékszavak használatát: esetleg, csaknem, olyanféle, természetesen, mindenesetre, valójában, tulajdonképpen, úgy látszik stb.!
- A nem megfelelő szóhasználatot: ismert szavakat, kifejezéseket használjunk, az idegen szavakat vagy tartalmukat pontosan határozzuk meg!
- Amit nem tudnak, azt ne tételezzük fel!

A tartalom átláthatósága, könnyű naprakésszé tétele érdekében valósítsuk meg a rugalmas és moduláris felépítést!

A felhasználóbarát tervezés alapkövetelménye, hogy az oktatóprogram rendezett, egyszerűen kezelhető, esztétikus és jól átlátható legyen, ezáltal válík természetessé és egyértelművé a felhasználó számára. Fontos szempont, hogy bármikor és bárhonnann vissza- és ki is lehessen lépni a programból. Ez nagyban elősegiti a tanuló bizalmának elnyerését, mivel bármikor megszakíthatja a program futását, de bármikor vissza is térhet ugyanarra a pontra, ahol abba hagyta, és folytathatja a tanulási folyamatot.

3.1.5.4 Szerkesztési szempontok

A multimédiás tananyag alapvető követelménye, hogy különböző médiaelemeket – szöveg, hang, álló-, és mozgókép, hiper hivatkozások és animáció – tartalmazzon!

Az ikonok elrendezése rendszerezett, kezelésük egyszerű legyen! Az ikon az az eszköz, amellyel navigálhatunk a programon belül. A megfelelő navigációval érhető el az, hogy a felhasználó biztonsággal kezelje a programot, ezáltal könnyebbé válik a tananyag megértése. Egy multimédiás oktatóprogramon belül az ikonok mindig ugyanazon a helyen kell, hogy elhelyezkedjenek, mert ha oldalanként változik a helyük, akkor az rontja a tananyag megértését, és összezavarja a felhasználót. Az ikonok színe és mérete is meghatározó, pl. egy sötét színű ikonhoz nem szabad sötét feliratot választani de, az sem jó megoldás, ha nagyon élénk színű feliratot használunk. Az ikonokat egyenletes sorokba vagy oszlopokba rendezve kell elhelyezni!
Az egyszerű kezelés érdekében biztosítani kell a magas szintű navigációt! Fontos a jó színválasztás, az odaillő háttér, a funkcionális gombok és az átláttható menürendszer, illy módon minden tananyagréz gyorsan elérhető. Vegyük figyelembe, hogy a gyors elérhetőség ne menjjen az átláthatóság rovására. Nem biztos, hogy van elegendő tér folyamatosan minden gomb megjelenítésére. Ez megoldható előrejíthető és felfedhető almenükkel. A menürendszer felépítésének logikusnak kell lennie, ne kelljen azt is megtanulni, mi hol található meg! Hasznos, ha a magyarázó információkat új ablakban lehet megtekinteni, erre a hiperlink a legalakalmassabb, így nem keveredik össze az eredeti szöveggel, és opcionális az elolvasása is. A hiperlink mindig kék színű, és legyen aláhúzva. Ha már meglátogattuk a hiperlinket, az váltson színt, a lila alkalmazása a leggyakoribb. A menürendszerek fontos részei a gombok, hiszen ezek segítségével tudunk előre- és hátrahaladni az anyagban. Ha egy gomb fölé visszük a kurzort, akkor a nyíl változó helyi mutatójújá. Vannak alapvető szabályok a gombok alakjára és színére, pl. a lapozás a megfelelő irányba mutató nyílakkal történjen. A kilépés gomb az „x”, a súgó jele a kérdőjel stb. A piros színnel tiltunk, a zölddel engedünk; illette a zöld a helyes, piros a helytelen megoldást jelöli.

A tanulási folyamatban jelenítsük meg a helyes utakat a felhasználónak! A multimédiás program menüpontjai között könnyen elveszhet a felhasználó, különön a tanulás kezdetén. Ha a programban a tanuló eltéved, vagy nem azt az anyagot olvassa, ami éppen soron következik, akkor a tananyag helytelen elsajátítása következhet be.

3.1.5.5 A szöveg megjelenítése

A multimédiás tananyag alapvető követelménye, hogy jól áttekinthető információk legyenek a monitoron. Legyen a megjelenített szöveg tömör, tartalma lényegre törő. A képernyőn a nyomtatott laphoz képest rosszabb az olvashatóság, több a szemmozgás, így fokozott a szemmozgató-izmok elfáradása is. A javasolt szövegméret a képernyő teljes felületének egyharmada. A megjelenített szöveget használjuk fel több célra. A szövegben helyezzük el azokat a szavakat, amelyekhez további információt fűzünk, vagy használjuk azokat az egyes oldalak közötti navigációs pontként, fűzzünk a szövegbbe hiperlinkeket.

A szöveges oldalak megtervezésénél a tipográfia alapszabályait kell követni! Ne használjunk írott betűtípusból csupa nagybetús szedést. A jó olvashatóság érdekében használjunk „karakeres” betűtípusokat, hiszen a szöveg azonosítása a betűk tetejének, illetve aljának azonosításával egyenlő.

A szöveg sűrűsége az olvasási sebességet és a megértést befolyásoló tényező, ezért mindig törekedjünk arra, hogy arányos szövegmennyiséget jelenítsünk meg.
A betűnagyság támogassa a jó olvashatóságot! Vizuális szempontból fontos, hogy mindig jól látható legyen a szöveg, amit létrehozunk. Megfelelően nagy, 14-es, 16-os betűméretet kell használni, félkövért, és olyan háttérszínt, vagy hátterképet, amely kiemeli a szöveget. Ezzel megkönnyítjük az anyag olvasását és feldolgozását, így a felhasználó szívesebben olvassa azt, könnyebben megérti, és gyorsabban tud haladni.

A multimédiás alkalmazásokhoz legmegfelelőbb az úgynevezett talp nélküli (sans serif) betűtípus, mint például az Arial vagy a Helvetica. A másik, azaz a talpas (sans) betűtípus a monitor képernyőjén nehezen olvasható (ezek: Times New Roman, Courier, stb.), ezért nem ajánlott. Ha mégis ilyet szeretnénk használni, akkor a betűméret növelése javítja a helyzetet.

Egy jól tagolt oldal követelményei az alábbiak:

- címsorok használata;
- rövid bekezdések, ha egy bekezdésnek mindenképpen hosszúnak kell lennie, akkor a bekezdésről ki lehet emelni egy rövid összefoglalót;
- a vastag, dőlt betűket nehezebb olvasni képernyőről, így azok használata ne legyen túl gyakori;
- aláhúzott szöveget ne nagyon alkalmazzunk, mert a világhálón az a hivatkozások jelölésére szolgál;
- a felsorolások használata javasolt.

A helyesírási hibákra különösképpen kell ügyeln! Ha valamit nem tudunk, vagy nem vagyunk benne biztosak, inkább nézzünk utána, mert egy helyesírási hibákkal teli szöveg igen kiábrándító lehet.

Szövegblokkok irásakor vagy sorkizárt, vagy balra zárta igazítást alkalmazzunk! Arra, hogy melyik a megfelelőbb, nincs egyértelmű válasz. A balra zárta rendezetlen hatást kelt a felhasználóban, míg a sorkizárt igazításnál a szavak között hosszabb szünet is keletkezhet, ha nem megfelelő a sorok hossza vagy a betűméret, illetve típus, s ez nem esztétikus a szöveg szempontjából sem.

A szövegblokkokat a legjobb egyhasábos formában elrendezni. Lehetőleg kerüljük az elválasztásokat, a rövidítéseket, a betűszókat, kivéve pl. mértékegységek esetében, a sortöréseket pedig a szavak végén tegyük meg.

A szöveg alakítását és a felfedezési módszereket figyelni érdemes. Megfelelően kiválasztva gyorsabban megtaláljuk az információt. Azonban csak a lényeges szöveg részét emeljük ki, különben zavaró hatású lehet, ha túl sok információval tesszük meg ugyanezt!
Több kiemelési lehetőség létezik:

- elsőrendű, figyelemfelkeltő kiemelések, pl. villogások, hangeffektusok;
- másodrendű figyelemfelkeltő kiemelések, pl. méret-, szín-, intenzitáskülönbségek, keret;
- harmadrendű figyelemfelkeltő kiemelések, pl. a nagybetű, az eltolás vagy a betűtípusváltás.

Ha címeket akarunk kiemelni, akkor általában a betűméret megnövelését szoktuk használni, alcímek esetében pedig dölt betűtípust alkalmazhatunk.

Szövegtörzseként alkalmazott kiemelések:

- kövér, félkövér, dölt betűtípus használata;
- betűméret megváltoztatása, pl. nagybetűre;
- eltérő színű betűk alkalmazása;
- szöveg keretezése.

Ezeket a lehetőségeket különbözőképpen kombinálhatjuk, ameddig még esztétikus marad a szöveg, illetve az alkalmazás. Dölt és aláhúzott betűk használata zavaró lehet az olvasásban. Olvashatóság szempontjából a 14-16 pontos betűméretet monddhatjuk a legjobbnak, azonban ez a betűtávolság a térköz és az iga- zítás függvényében változhat.

3.1.5.6 A hang minősége

A narrátor hangja legyen érthető, szövege világos, a beszéd sebessége megfelelő. Olyan szakembert alkalmazzunk, aki valamely kommunikációs folyamatban, általában hivatásszerűen közvetíti a befogadók részére az üzenetet, pl. szinkron-színész, tévébemondó, kommentátor stb. Fontos, hogy a narrátor kellemes hangszínrel rendelkezzen. Megfelelő ritmusban kell beszélnie, ne legyen túl gyors, de túl lassú se. Hanglejtésével színessebbé teheti a jeleneteket, kiemelheti, illetve kevésbé hangsúlyossá teheti a részleteket.

A .wma jobb tömörítési algoritmusának köszönhetően kevesebb helyet foglal, mint egy azonos minőségű .mp3.
A felvétel készítésekor célserű tömörítetlen formátumba menteni a hangot, ez lehet pl. .wav, .api formátumú.

A multimédia oktatási softverek természetesen nem zenehallgatási célból jönnek létre, ezért nem is várható el a CD minőségű hangvisszaadás, kivéve a speciális eseteket, pl. madárcsicsergést bemutató oktatóprogram.

A digitalizálás során az alábbi értékekkel célszerű dolgozni:

<table>
<thead>
<tr>
<th>Mintavételi</th>
<th>Kvantálás</th>
<th>Sztereo/Mono</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zene 22 kHz</td>
<td>16 bit</td>
<td>Sztereo</td>
</tr>
<tr>
<td>Narrátor 11 kHz</td>
<td>16 bit</td>
<td>Mono</td>
</tr>
</tbody>
</table>

Gyakran előforduló hiba, hogy a tananyag különböző részeiben alkalmazott hangillusztrációk hangereje különböző. Zavaró a felhasználó számára, hogy időnként nem hallja, máskor meg a „fülébe ordít” a program hangja. Alapvető követelmény, hogy a hangerő legyen egyenletes a teljes tananyagban!

Csak az a szemléltetés hatásos, amely támogatja a tanulási folyamatot. A hangok jól egészítsék ki, és ne zavarják az információátadást!

3.1.5.7 Képek szerkesztése

A képek nagysága arányos legyen a szöveggel! Multimédia készítésénél sok képet és ábrát alkalmazunk, fontos, hogy hol helyezzük el őket, milyen nagyságban és mennyiségben. Ha képekkel szeretnénk illusztrálni a témát, akkor jó felbontású képeket helyezzünk el a multimédiában. Segíthetjük a felhasználót a finomabb részletek megismerésében, ha a képre rákattintva meg tudjuk azt tekinteni nagyobb méretben is. Az alakzatokat elegendő a lényegesnek tartott vonásokkal ábrázolni, ne használjunk túl bonyolult, átláthatatlan ábrákat. A marquee (fényújság), blink (villogás) elemek, villogó és más figyelemfelkeltő, elterelő képek (animált GIF-ek, ugráló Flash-ek) használata nem kifejezetten javasolt! Ezek rontják az oldal olvashatóságát. A figyelemelterelő szerepen kívül, a túl sok, a témához nem kapcsolódó vagy egy rosszul megválasztott kép még az igénytelenség látszatát is keltheti, és az összhatás szörnyű lesz! Lehetőleg valamilyen közismert formátumban lévő képpel dolgozzunk, pl. jpg. Ezek a szabványos fájlok, magas tömörítésüknek köszönhetően kevesebb helyet foglalnak el a melevlemezen. Ha egy képet jó minőségben akarunk tárolni, használhatjuk a .wmp kiterjesztést, mely a HD Photo kiterjesztése. A .wmp formátumot a Windows Vista alapértelmezésben támogatja, Windows XP-vel pedig egy frissítés letöltése után használható. Ezzel a formátummal lehetőségünk nyílik a képek veszteségmentes
tömörítésére, de veszteséges tömörítés esetén kisebb minőségromlással, sokkal kisebb fájlméretet érünk el, mint a .jpg. Mind a képek belső szerkezete, mind a bemutatott tárgyak elhelyezkedése a látótérben az elrendezéstől nagymértékben függő hatásokat vált ki a szemlélőben. Túl a jó láthatóságon, a tárgyak, rajzok alakja, egymáshoz való formai viszonya, elhelyezkedése az emberi figyelmet meghatározott módon befolyásolja. Érdemes arra törekedni, hogy a bemutatásra szánt tartalmi elemek elrendezésével, színezésével a figyelmet a lényeges momentumokra irányítsuk. A látómezőben körülvett felület inkább alakzatnak tűnik, míg a nem határolt rész háttérnek.

Lehetőleg a képernyőn mindig ugyanazon a helyen jelenjenek meg a képek!

Ezzel az egységesség érzetét keltjük a felhasználóban. Ennek érdekében, már a fejlesztési folyamat kezdetén meg kell állapodni az alkalmazható sablon szerkezetében. Vizuálizálásra ott van szükség, ahol a tanulónak a közvetlen tapasztalata hiányzik, pl. távoli országok vagy a valóság mikroszkopikus területei. Másrészt a képi megjelenítés a láthatatlan dolgok, pl. elméletek, modell kép alapjátéke is szolgál. A felhasznált képek mérete csak szükséges esetben haladja meg a 320x240 pixel felbontást (ekkor 640x480 ajánlott), a színmélység esetén a 16 bit elegendő. Figyelembe kell venni, hogy a monitorok általánosságban milyen felbontással használnak, az elterjedt konfigurációk lehetőségei szükségesek, ezáltal is kerülni kell a nagyméretű képek használatát. Azok a képek, amelyek nagyobbak a használt felbontásnál, már nem jeleníthetők meg egy képként, hanem csak a részletei látszanak, ezáltal a megértés minősége romlik. Nagyított részletek esetén is törekedni kell a képernyőn elférő, azt teljesen kitöltő kép használatára.

Az álló- és a mozgókép digitalizálás minősége jó legyen!

A videó-bejátszások az összes szemléltető előnyükkel együtt akkor hatékonyak igazán, ha a megfelelő információkat megfelelő tempóban, felbontással és hanggal nyújítják. Videó anyagokban be lehet mutatni olyan speciális feladatokat vagy eseményeket, amelyeket szavakkal csak körülményesen lehetne elmagyarázni, grafikával pedig nem lehetne elégtelenül megjeleníteni. Mozgóképek segítségével nagy mértékben felkelhető a felhasználó vagy a multimédia bemutatót megtekintő közönség figyeleme. A digitalizált képet tömöríteni kell, hiszen egy percnéi videóanyag-hanggal tv-szabvány szerinti méretben közel 2 GB memóriát foglal el. A méret tömörítéssel és a képablak kicsinyítésével ez drasztikusan csökkenthető. Bizonyos esetekben, ahol kevés gyors mozgás történik, egyszázados tömörítés is megfelelő lehet, de 1/20-as kompresszió általánosan elfogadott, kiváló minőséget produkál. **Az egyes médiák párhuzamos futtatása valamint két videó egyidejű lejátszása kerülendő!** Tömörítő eljárások lehetnek az MPEG különböző szabványai, az AVI, az MJPEG valamint a DivX. Érdemes használni

Animációk segítségével lényegesen több információt közölhetünk, mint egy-szerű grafikus oldalakkal, viszont a számítógép teljesítményét mégsem kell meg-növelni olyan mértékben, mintha videó elemeket szeretnénk megjeleníteni. A szabadon letöthető és web böngészővel használható „Flash” lejátszó segítségével nézhetjük a tananyagba ágyazott animációkat.

Fontos megjegyezni, hogy a digitalizálás során figyelni kell a hang- és képanyag összhangjára, az esetleges aláfizető zene típusára, sebességére. Lényeges, hogy a beszéd a film alatt is érthető legyen, és végig szinkronban haladjon a képi mondandívalóval.

3.1.5.8 Hiperhivatkozások, animációk

Ügyeljünk arra, hogy csak jól működő hiperhivatkozásokat alkalmazzunk! Mindig ellenőrizzük, hogy ahova a hivatkozás mutat, az egy létező weboldal legyen!

Mindig egyszerű és egyértelmű legyen a visszatérés a tananyaghoz. A túl gya-kori hivatkozások alkalmazása, megbontja a tananyag elsaajátításának rendjét, a felhasználó esetleg ott is hagyhatja a tananyagot, mert a hivatkozott oldalakon érdekesebb vagy látványosabb információkat talál!

Az animációk lejátszási sebessége alkalmazkodjon a felhasználóhoz! Az ani-mációk alkalmazásánál különösen fontos a célcsoport szokásainak és felkészült-ségének ismerete. Idősebb tanulók vagy kisgyerekek esetén mindig több időt hagyjunk az információk megértésére és feldolgozására.

Könnyen ismételhető animációkat alkalmazzunk! Az animációk mindig kedvelt részei a tananyagnak. Biztosítsuk a felhasználónak, hogy minden különösebb technikai felkészültség nélkül ismételten meg tudja nézni a látványelemet!
A 21. század iskolája

3.2 Módszerek

3.2.1 Csoportmódszerek

3.2.1.1 Kollaboratív tanulási környezetek

Kárpáti Andrea

A kollaboratív online tanulási környezetek legfontosabb célja az egymástól távol dolgozók közös munkájának segítése, ezért a szokásos kommunikációs eszközök kívül egyéb segítséget is adnak a közös munkához. A tanulásméletek közül az együttműködésen alapuló tudásszerzéssel kapcsolatos elméletek fontosak. Ilyen a konstruktivista pedagógia (tudásszerzési koncepció), amely a tanuló iskolai és informális tanulás során szerzett ismereteire és tapasztalataira egyaránt épít. A konstruktivista (az együttműködő tudásépítés alapozott) modellben a tankönyv a tananyag leképezése. Az értékelés legtöbbször szummatív jellegű, egy előre kijelölt szint elérését méri. Az instruktivista tanulási háromszög csúcson a diák, a tanár és a tananyag áll, s közöttük a kapcsolódási pont.

A konstruktivista (az együttműködő tudásépítésre alapozott) modellben viszont a tanár az edző, a mentor és szakértő szerepeit váltogatja, a tanuló pedig aktív tudáskonstruáló, a tanulási folyamat egyenrangú részvevője. Ebben a modellben integratív oktatási tartalmak, több tantárgyat átfogó ismeretrendszerek vannak többségben (ez nem feltétlenül jelenti a tantárgyak „összeolvashatóságát”, inkább a közös csomópontok felmutatását). Az értékelés diagnosztikus vagy formatív jellegű, alakító, a tanulási környezet pedig lehetőséget teremt az interakcióra.

A konstruktívista tanulási modellje a didaktikai sokszög, amelyben a tanár és a diákok közössége mellett helye van a nyitott feladatoknak, az összefüggő, tudományterületeknek, és minden korábbi modellnél nagyobb szerepet kap a tanulási környezet, benne ma már az oktatási informatika eszközei (NAHALKA, 2001).

A számítógéppel segített kollaboratív tanulás (CSCL – Computer Supported Collaborative Learning) hozzásegít a szerzett tudássépítő pedagógiai paradigmahoz és a társadalmi elvárásokhoz, a szociális kompetenciák fejlesztésének igényéhez is. A kollaboratív tanulási környezetek tartalommal általában nincsenek feltöltve, hiszen az együttműködés célja éppen a közös tudáskonstruálás, új ismereteik együttműködő létrehozása. A számítógéppel segített, kutatás alapú együttműködő tanulás (inquiry based learning) klasszikus példája M. SCARDAMALIA.
1Ilyenek lehetnek például a wikipédia cikkei, közösen készített szakcikkek, vagy akár közös erővel létrehozott fogalom térkép, gondolattérkép, vitaterkép, ahol egy közös produktumon dolgoznak az alkotóik. Ezekről könyvünk más fejezetében részletesen szólunk.
A 21. század iskolája

nulás; Bereiters: tudásépítés; Nonaka és Takeuchi: szervezeti tudáslétrehozás). Ez a pedagógiai modell kapcsolódik a tevékenységelméletehez (aktivitáselmélet), mely az emberi tevékenységek objektumorientáltságát hangsúlyozza, és egyik központi eleme a fogalmi alkotás (Molnár és Kárpáti, közlésre benyújtva).

A kollaboratív tanulási modell immár nem technikai lehetőségként, hanem a tudásalapú társadalom mindennapi valóságaként tekinti az elektronikus tanulás eszközeit. Az e-learning 2 a „behálózott társadalom” igényeire válaszol: megtéreti az átjárást a formális és informális tanulás szinterei között. Olyan oktatási módszereket alkalmaz és virtuális tanulási terekben mozog, amelyekben a személyes jellegű, „magánéleti” alkalmazások és a zárt közösségek (pl. tanár-csoportok, szoftverfejlesztő cégek) alkotásai együtt használhatók. Ebben az új tanulási környezetben az internetes fájlcserés közösségi produkumai: a képek, szövegek, hangok szabad megosztása, a közösségi vitafórumokon születő új ismeretek, a „mindenki lexikonja”, a szabadon szerkeszthető, bármely témában útjára indítható wikipédia az oktatás egyenrangú eszközei. Ezekből tevődik össze a személyes tanulási tér (Personalised Learning Environment, PLE), amelynek fontos részei a munkacsoportok, tanulóközösségek együttműködését segítő alkalmazások. (Ezkről könyvünk 3.2. részében bővebben is szólunk.)

A konstruktív pedagógiás számára az informatikai környezet lényegesen nagyobb esélyt kínál alapvető céljainak megvalósítására, mint a hagyományos oktatási környezetek. A kollaboratív, vagyis a tanulók, tanulócsoportok, illetve a tanár közötti együttműködést támogató tanulási környezetek jellemzői:

- A tanulók előzetes tudására épít
- Az ismeretanyag közvetlen felfedezésével alapuló bemutatása, cselekvéses tanulás
- Folyamatos (ön)kifejezési lehetőség
- Multikulturális szemléletmód – könnyű kapcsolódás a környezetet használó hazai és külföldi csoportokhoz, közös munka azonos digitális tan- eszközökkel
- Több érzékszerv használata a tanulásban
- Nem a produktum, hanem a folyamat a fontos, és ezt a tanár és a tanulók egyaránt jelentősen módosított alkotásokat a tanulási környezet megőrzi.

elsőként a korábban már említett Valnet/ITCOLE Vízjelek projektben próbálták ki a Sulinet Programiroda és az European Schoolnet (EUN) együttműködésében, tíz innovatív iskolában (vö. Főző, 2006). A Fle3 nem annak a tanárnak szól, aki szereti pontosan előírni tanulóinak, mit tegyenek, és mikor tegyék. Aki szívesen szervez páros vagy csoportmunkát, jól fogja érezní magát ebben a virtuális térben, amely az alkotásra és a tudás fejlődő kifejezésére összpontosít. A Vízjelek innovációs program során például gyerekek mini projekteket hajtottak végre; az iskolájuk közelében levő folyóvízről vagy állóvízről környezeti, kulturális, művészeti felvételt készítettek. Ez azt jelentette, hogy mértek, a helyszínen kémiai vizsgálatokat végeztek és a vízhez kapcsolódó kultúrtörténeti, művészeti eseményeket írtak le. A Fle3-t úgy tervezték, hogy a tanulói csoportokat érdekeltté tegye abban, hogy kutatásokat végezzenek, önálló felfedezéseket tegyenek a tanulási folyamat során, ezért a projektmunkában különösen jól hasznosult (vö. A magyarországi projekttatás, é. n.).

A Fle3 keretén belül zajló munka kurzusokban történik, ezeket egyszerre maximum 40 felhasználó használhatja. A felhasználókat a tanár hívja meg a rendszerbe, amely így teljesen zártkörű. A platformnak alapvetően három része van: a Kuckó (Webtop), a Tudásfa (Knowledge Building) és az Ötletetház (Jamming), amelyek a munka különböző fázisaiban alkalmazhatók. A Kuckó minden felhasználó saját területe. A téma feldolgozása során összegyűjtött képek, szöveges információk, linkek tölthetők fel ide. Egyéni terület, de a többi tanuló is bármikor betekintést kaphat az itt tárolt információkba. A munka nagy része a Tudásfában zajlik. Ez a csoportos tanulás strukturált kommunikációs környezete, ahol a tanulók fórumrendszeren keresztül lépnek egymással kapcsolatba. Az Ötletetház a szabad asszociációk, a kreatív együttgondolkodás színtere, ahol a diákok „ötletmorzsák” létrehozásával segítik a közös felfedező munkát. Mód van itt rajzok készítésére is, így szerepet kap a vizuális gondolkodás.

A Fle3 fejlesztői csoportjának legújabb munkája a LeMill kollaboratív tudásmegosztó környezet, amelynél a már bemutatott CALIBRATE Projekt LRE tananyag-adatbázisához kapcsolódik egy tananyagkészítő rendszer is, a LeMill (http://lemill.net/). E portálon lehet új tananyagokat feltölteni, kisérletezni velük, valamint szerkeszteni őket. Itt is működik kereső rendszer, mely segít a keresési feltételeknek leginkább releváns tananyagokat megtalálni. Lehetőség van virtuális csoportok létrehozására, illetve azokhoz való kapcsolódásra is a Közösség menüpontra kattintva (ld. alább).

A kezdőoldalon az alábbi három kiemelt lehetőség közül választhatunk: Tartalom, Módszerek, Eszközök. A Tartalom az oktatási tartalmakra vonatkozik, itt kereshetünk tananyagokat különböző szempontok szerint (nyelv, cím, tantárgy, célcsoport, kulcsszó), valamint ide kattintva tölthetünk fel új tananyagot a rend-
56. ábra: A LeMill tananyagkészítő rendszer képernyőképe

A LeMill, lévén egy együttműködő, közösségi munkakörnyezet, az együttműködésben résztvevő személyek megtalálására is lehetőséget ad a Közösség oldalon. Embereket és csoportokat kereshetünk. Az előbbieket nyelvek, név, országok, kompetenciák, érdeklődési kör és tantárgyak szerint tehetjük, míg a csoportokat nyelvek, név és kulcsszavak szerint bőngészhetjük. A LeMill környezet legfőbb erénye éppen az, hogy benne kollaboratív tudás-építő csoportok hozhatók létre.
Magyar nyelvű, igen aktív csoport is van, melyet a nyelv beállításával (magyar) azonnal megtalálhatunk. Tagjai a CALIBRATE-et kipróbáló tanárok, akik ebben a kollaboratív környezetben egyszerűen és hatékonyan osztják meg egymással tananyagaikat, óravázlataikat, ötleteiket. A számítógéppel segített tanulással kapcsolatos témákéről indított vitafórumokon megjegyzéseikkel egymás munkáját értékelik és segítségéül. A LeMill-be feltöltött tartalmakat havonta szinkronizálják az LRE portállal, ami azt jelenti, hogy az utóbbi egy hónapban készült tananyagokat az LRE oldal adatbázisába is áttöltött.

Itt, a LeMill-ben különösen jellemző, hogy sokszor a tananyagok tulajdonképpen hivatalos oktatási portálokra vagy a tananyagok saját weboldalaira. Ezek sem egyszerű linkek, hanem tapasztalatokkal megalapozott ajánlások, hiszen a feltöltött részletes leírást ad az ily módon ajánlott weboldal használatáról, lehetőségeiről és jellemzőiről. A LeMill használatához igen sok nyelv közül választhatunk: cseh, német, angol, spanyol, ész, finn, francia, magyar, arab, ír, lengyel, orosz, svéd – ezekből az országokból és mindazokból, ahol ezeket a nyelveket hivatalos (oktatási) nyelvként használják, bőven találunk tananyagokat. A még nem csatlakozott országokból egy-egy pedagógus fedezte fel magának ezt a rendszert, ezért pl. szlovák vagy holland tananyag kevés van még. Az LRE oldalhoz hasonlóan itt is több funkcióval rendelkező segítő rendszer támogatja a munkája közben valahol elakadt vagy a rendszerrel most ismerkedő, kezdő felhasználókat. A gyakran ismételt kérdések gyűjteménye is hasznos ötleteket és információkat adhat.

Néhány érdekes tananyag az adatbázisokból:

Földrajz (vő. még: Pajtókné, 2008):
- Elektronikus feladatlapok, keresztjátékok: magyar nyelven is megoldható a Találd ki! Európa http://celebrate.digitalbrain.com/celebrate/community/celebrate/resources/Hungary/Europe/Guess%20Europe/media/vegso.swf
- A tananyagtartalmakban – jelentőségéhez mértében – dominánsan jelennek meg a környezetvédelemmel kapcsolatos oldalak. A környezet fel-
A 21. század iskolája

- A geográfia tudományágai közül a Földrengésfigyelő (http://www.iris.edu/seismon/) oldalaira barangolhat el a felhasználó. Kiváló honlap
- A Föld története (http://www.scotese.com/climate.htm), ahol animációkat, térképeket, műholdképeket láthatunk a Földről és annak történetétől
- Interaktív Európa-térkép (http://www.eurogeo.org/flash/maps/index.html)
- A Geography Photos (http://www.sln.org.uk/geography/Images.htm) a földrajz tanításához kínál jól használható képeket
- Sajnos csak szlovén nyelven elérhető, de nagyon érdekes weboldal, képekkel gazdagítva a világ leghíresebb vulkánjairól: http://projekti.svarog.org/vulkani/
- A Soca-völgyről, angolul: http://www2.arnes.si/~osljvodm2s/soca/indexsoca.html
- Magyarország földrajzi helyzete, tájai című tananyag röviden összefoglalja Magyarország térképekkel gazdagított földrajzát
- Cseh „GeoWeb“-földrajzi tananyagok gyűjteménye: http://www.gweb.cz/

Matematika
Az LRE-ben itt is 1000 tananyag kerül listázásra, melyek nagy része hivatkozás. A LeMill-ben 120 tananyagot kapunk. Ez utóbbi lelőhelyen található tananyagokról elmondható, hogy kiemelkedően jó minőségűek a többi tantárgy tananyagaihoz képest.
Matematikai fejtőrők: http://library.thinkquest.org/20991/quizzes/index.html

Nagyon érdekkes weboldal, mely az Univerzum méretarányait kívánja bemutatni, majd egészen 10⁻¹⁶ m-ig felnagyít egy falevelet. Angol nyelven, érthető stílusban íródott, azonban akár a földrajzhoz vagy a fizikához is kerülhetne: http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/

Fizika

Német nyelvű tananyagok gyűjteménye matematikához és fizikához: http://www.zum.de/dwu/uma.htm

Fizikai jelenségek közérthető magyarázatai: http://webphysics.davidson.edu/physlet_resources/optics4/default.html

Kémia
A kémia tantárgy esetében az LRE-ben 760, a LeMill-ben csupán 6 találat jelentik meg, melyek közül gyakorlatilag egyik sem önálló tananyag, hanem linket tartalmazó leírás.

Német nyelvű interaktív tananyag a periódusos rendszerben található kémiai elemekről, melyekre egyesével rá lehet kattintani, és így megjelennek az adott elem részletes tulajdonságai:

http://www.uniterra.de/rutherford/

Angol nyelvű oldal főként a kémiai molekuláris kötések témakörében:

Érdekes weboldal a víz tulajdonságairól:

http://www.o-fp.kr.edus.si/iearn/voda/index.htm

Angol mint idegen nyelv

A tananyag-adatbázisban az idegen nyelvekhez tartozó tananyagok keresésének megvan az az előnye, hogy szinte az összes, azon a nyelven íródott tananyagot felhasználhatjuk a tanításhoz, a motivációs szintet még növelni is tudjuk az érdekesebb idegen nyelvű tananyagok alkalmazásával.

Az LRE-ben itt is 1000, míg a LeMill-ben 230 tananyagot kapunk az *english* kulcsszót beírva a szabadszavas keresőbe. Természetesen egyértelműen állítható, hogy angol nyelvből a legszélesebb a tananyagpaletta.

„Gerunds and infinitives presentation” címmel egy nagyon hasznos összefoglaló anyagra bukkanhatunk, mely mind a nyelvet alaposabban megtanulni szándékozók számára, mind a tanároknak háttér-információ szerzése céljára remekül használható.

www.lemill.net/content/gerunds-and-infinitives-presentation/view

Nagyon gazdag gyűjtemény minden témakörben, a cseh alaptanterv szerinti műveltséget területek szerint rendezve, bőséges hivatkozásállomány-nyal: http://www.ewa.cz/

MELT néven 2007-től új projekt bővíti és tökéletesíti a Learning Resource Exchange (LRE) adatbázist. A megújított portálnak – amely a jelenleg működő LRE utóda lesz 2009 márciusától –, az lesz az előnye, hogy sokkal részletesebb meta-adatokkal (a tananyagelemekről szóló, ezek felhasználását segítő háttér-információkkal) segíti a tanárok tájékozódását. Szerencsés módon ez a projekt két problémát is fog kezelni a fent felsoroltak közül: a tananyagok jobb címkézését és
a tartalom minőségbiztosítását. Az információs oldalon (http://info.melt-project.eu/) olvasható, hogy a tananyagok feltöltése szempontjából is számos újdonság várható ettől a projektttől, melyet szintén az European Schoolnet irányít, s a magyar partnerek a Sulinet Digitális Tudásbázis fejlesztői és működtetői. Néhány, a korábban bemutatott európai tananyag portál, az LRE jobb működését segítő változás:

- Szakértő, képzett és gyakorlott indexelők átnézik, és bővebb leírással látják el az egyes tananyagelemeket.
- A MELT-et használó tanárok részére a társadalmi címkészés, vagyis a felhasználók által készített leíró címek készítésére is alkalmas szoftver eszközöket helyeznek el a portálon. Angol kifejezéssel, mely a taxonómia (taxonomy) és a nép (folk) szavak összetétele, ezt a közös tudásalkotást folkszonómiának („folksonomy”) nevezik.
- Automatikus metadat előállító szoftver alkalmazásokkal is elősegítik, hogy a lehető legtöbb adat álljon rendelkezésre egy-egy tananyagelemről. A cél az, hogy a sokféle felhasználói információt rendezetten bemutató „metaadat-ökológiá” jöjjön létre, amely egyszerűbbé és hatékonyabbá teszi a keresést.
- A tartalom minőségbiztosítása első lépcsőben a nemzeti adatszolgáltatók feladata lesz, és szakértő tanárok, valamint értékeltők bevonásával zajlik majd. A következőket fogják vizsgálni nemzeti szinten:
 - a tartalom helyességét (tudományos pontosság)
 - veszélyes, inkorrekt tartalmakat (ezeket kiszűrik)
 - a szerzői joggal kapcsolatos kérdéseket

Ha mindezek a fejlesztések megvalósulnak, az LRE valóban európai színvonalú, jól használható tudásbázissá válhat majd, s a felhasználók – legyen akár tanárok, akár tanulókról szó – nemcsak jogilag, hanem ebben a kontextusban is európai közösséget alkothatnak.

3.2.1.2 Projektmódszer, multimédiás projektek tervezése

Hazánkban a csoportos munkamódszerek közül talán a a projektmódszert ismerik és alkalmazzák leginkább. A módszer lényege az, hogy az adott tanulási szakasz végére a diákoknak valamiféle kézzel fogható, bemutatható anyagot, produktumot kell készíteniük (Fa l u s, 2003). Ebből adódóan a projektfeladatok általában összetettek, csoportmunkát, kooperációt igényelnek és gyakorlati természetűek. A 21. század diájkainak mindennapjait jelentős mértékben meghatá-
rozza a média és az internet, ez az iskolán kívül szerzett ismereteik legfőbb forrása (Molnár, 2007), így számukra akkor életszerű, motiváló, gyakorlati jellegű egy feladat, ha megoldásához megszokott problémamegoldó eszközeiket, számítógépet, internetet, mobiltelefont stb. kell használni (Csapó, 2003). Ez a kívánalom a multimédiás projekt esetében megvalósul.

<table>
<thead>
<tr>
<th>Fázis</th>
<th>A tanár szerepe</th>
<th>A diák szerepe</th>
</tr>
</thead>
<tbody>
<tr>
<td>DÖNTÉS</td>
<td>TERVEZÉS
♦ Sztenderdek és oktatási célok meghatározása
♦ Projekt meghatározása
♦ Szükséges készségek, képességek számbavétele
♦ Értékelés módjának meghatározása</td>
<td>Szervezés
♦ Tartalommal kapcsolatos ötletgyűjtés
♦ Megvalósíthatósági vizsgálat</td>
</tr>
<tr>
<td></td>
<td>SZEVEZÉS
♦ A csoportalakítás módjainak áttekintése
♦ Csoportalakítás
♦ Rendelkezésre álló idő meghatározása</td>
<td></td>
</tr>
<tr>
<td>TERVEZÉS</td>
<td>♦ A tervezés irányelvének meghatározása, esetlegesen sablon, illetve minta biztosítása
♦ Formatív értékelés</td>
<td>♦ Tartalom tervezete
♦ Folyamatábra megjegyzése
♦ A projekt dízünh, film, felület kinézetének meghatározása
♦ Szükséges szövegek, történet megalkotása</td>
</tr>
<tr>
<td>MEGVALÓSÍTÁS</td>
<td>♦ A multimédiás anyagok elkészítésének segítése, facilitálása, irányítása
♦ Formatív értékelés</td>
<td>♦ Rajzok elkészítése, letöltése
♦ Animációk elkészítése, letöltése
♦ Hanganyagok felvétele, elkészítése, letöltése
♦ Videó felvétele, elkészítése, letöltése
♦ Képek felvétele, letöltése
♦ A projekt megvalósításához szükséges programba integrálásuk, szerkesztésük</td>
</tr>
<tr>
<td>ÉRTÉKELÉS</td>
<td>♦ Tanulók értékelése
♦ Tevékenységek értékelése, útmutató a jövőre vonatkozólag</td>
<td>♦ A projekt bemutatása
♦ A társ(ak) értékelése
♦ Önértékelés</td>
</tr>
</tbody>
</table>

| 1. táblázat: A DDM-E modell megvalósítása során a tanár és a diák szerepe | (Karen és Barron, 2006 alapján) |
A döntési szakaszban először a tanárnak kell meghatároznia azokat a tantervi tartalmakat és pedagógiai célokat, amelyek megvalósítására projektet indít, s amelyeket a megvalósítás során értékelni fognak. Meg kell határoznia a projekt időtartamát és azt is, hogy az adott célok milyen produktum létrehozása során, és milyen munkaformákkal, milyen eszközök használatával valósulhatnak meg leginkább. Ekkor még csak néhány feladatra kell lebontani a projektet. (56. ábra).

A tervezési szakasz fő feladata a munka lépésekre, részfeladatokra bontása. Ez a szakasz döntő jelentőségű, ezért elegendő időt kell rászánni, s ezt a diákokban is tudatosítani kell, akiket be kell vonni a tervezés folyamatába, hogy ötleteikkel gazdagítsák a tervet, és hogy motivációjuk kialakuljon. Ez a munka először a teljes tanulócsoporttal, majd a kialakult munkacsoportokon belül folyik. A tanulócsoportok kialakítása történhet kijelölés és önszerveződés útján is, legjobb azonban, ha néhány szempontot ad segítségül a tanár, és ennek alapján a tanulók maguk szerveződnek csoportokba. Az önállóság mértéke az összes projektfeladat és tevékenység során nagyrészt a projektekben való jártasságtól függ, érdemes a fokozatosság elvét követni. A részfeladatok és részproduktumok közös meghatározása után a munkamegosztás és az időbeosztás tervezése már az egyes munkacsoportok feladata. A tanár még ebben a fázisban is tudja befolyásolni a projekt alakulását, forrásokat, eszközöket, tanácsokat, mintákat adhat a diákoknak. A tevékenység feltétele, hogy a fázis elején a tanár ismertesse, megbeszélje az értékelési kritériumokat, azt, hogy mit vár el a tanulóktól.

Az értékelésnek részben a munkára magára, részben pedig a létrehozandó produktumokra (a résztermékekre és a végső produktumra) kell irányulnia. A szempont- vagy kritériumrendszer kidolgozása a tanár feladata, véglegesítése azonban közösen is történhet.

A harmadik szakasz maga a projektmunka, a feladatmegoldás. Mindenki elvégzi az általa vállalt részfeladatot, ebben segíti egymást a tanulók, majd a részfeladatokból össze kell állnia a közös produktumnak. Közben figyelniük kell arra, hogy betartsák az időkereteket és munkájuk megfeleljen a kritériumoknak. Érdemes konzultációkat, kiscsoportos és osztálymegbeszéléseket tartani, hogy a munka a kívánt mederben haladjon. Multimédiás projektek esetén a használt szoftverekkel és azok kompatibilitásával kapcsolatos problémákra is figyelmet kell szentelni.

A negyedik szakasz a projekt végső termékének, produktumának bemutatása és az előre meghatározott kritériumok szerint történő értékelés ideje. A későbbi munka érdekében hasznos, ha a tanár nemcsak a projektet értékelni, hanem a diákokat is, illetve megkéri a diákokat, hogy egymás, illetve a csoport munkáját is értékeljék. Ehhez eszközöket biztosíthat már a projekt elején, például ellenőrző lista vagy kritériumok formájában.
A projektmódser előnye az a nagyfokú szabadság, ami motiválja a tanulókat. A rájuk bizott projekt lehetőséget biztosít a kreativitásra, a csoportmunka és az egymásra utaltság pedig számos olyan készséget és képességet fejlesz, ami a hagyományosnak mondott oktatási módszerekkel aligha oldható meg.

3.2.1.3 Vitamódszer

A kompetenciafejlesztés, amely mára a hazai közoktatás központi célja lett, feltételezi, hogy életszerű helyzetekben, a munka világában jól használható képességeket fejlesztünk. Ezek egyike a vitakészség, amelynek legfontosabb összefüggése a világos érvelés, a partner közléseinek megértése, értékelése és a saját állásfoglalások értékelése, meggyőzően tükröző válaszadás. A tanár akkor képes hatásosan fejleszteni ezeket a részképességeket, ha rendszeres visszajelzést kap fejlődésükről, ha könnyen, áttekintetően képes megjeleníteni és elemezni a vitakészséget fejlesztő foglalkozásokat. Ha egyszerre vagyunk részesei és megfigyelő egy vitának, szinte lehetetlen pontos, részletes jegyzeteket megrendeznünk a lényeges hozzászólásokat és ezek kölcsönös kapcsolatát. A magnó- vagy videófelvétel készítése számos eszközt, alapos szervezetet kíván, és az utómkálatok – a közlések papírra vetése és elemzése – sok időt igényelnek. Számítógépes környezetben mindegy egyszerűbb, és a feladat életszerűsége sem szenned csorbát, hiszen a gyakran egymástól országhatárokkal elválasztott munkatársak rendszeresen használják az internetet egy-egy probléma megvitatására.

A tudás vizuális megjelenítése rengeteg előnyt igér, hiszen a megbeszélések szemléletes reprezentációja grafikus útmutatót nyújt a résztvevők számára. Így utólag is könnyen megállapítható, visszakövethető, ki mit mondott, mikor, ki-nek, milyen jellegű hozzászólásai voltak, mikor hangzottak el kérdések, mikor történt pusztán adatközles, milyen tennivalókat beszéltek meg, teljesítettek és terveztek, követhetők a közbeszélésok kontextusai sorrendje, a napirendi pontok, stb. Egy vitakövető szoftver alkalmasával az alábbi feladatokat oldhatjuk meg gyorsan és egyszerűen:

- a megbeszélések strukturálása,
- a felszólalások helyes sorrendjének megállapítása,
- az irány tisztázása és menetének finomítása,
- támogatások és ellenvélemények kiemelése,
- nagy mennyiségű információ egyszerű reprezentálása,
- trendek, nézetek, változások észlelése,
- fejlett emlékezeterősítés,
- mások közreműködésének magasabb szintű tudatossága,
- moderálás kényelmes módosítása.

58.ábra: A vita szerkezetének megjelenítése a DREW szoftverrel, a SCALE projekt eszközével
A szoftver képes a párbeszédet vitaelemekre bontani, és azokat diagramban ábrázolni, amelyet a tanuló maga is átszerkeszthet. Ezt a diagramot a szoftver szöveges esszéformába tudja átalakítani, bemutatva ezzel a tanulónak a diagramok és az esszék közötti összefüggéseket. Támogatja az egy témáról vitatkozó tanulók közötti szöveges párbeszédeket is. Automatikusan átalakít egy szöveget állításokká, következtetési szabályokká, és premisszákká, s ezzel felgyorsítja az információbevitelt, illetve lehetővé teszi a prózái szövegek és a vitadiagramok közötti oda-vissza váltást. A vitát szerkeszthető elektronikus diagramon jeleníti meg, amelyekben az állításokat a megfelelő nyilak kötik össze (érvek, ellenérvek). Ezen kívül a szoftver elemző eszköze, a RAINBOW (Szírvány), színekkel azonosítja a közléstípusokat, így azonnali visszajelzést ad a tanárnak a vita minőségéről.

Egy másik, még fejlesztés alatt álló, de 2009-től már szintén ingyen hozzáférhető vitakövető rendszer a MAPIT. A szoftvert a Tudás és Gyakorlat Laboratórium (Knowledge Practice Laboratory, KP-Lab) projekt keretében Magyarországon az ELTE TTK Multimédiapedagógiai Központja próbálja ki. A KP-Lab projekt a kollaboratív oktatásban felhasználható szoftvereket fejleszt és tesztel a

felsőoktatásban, s ennek részeként a tanárképzésben is (http://www.kp-lab.org/publications/public-deliverables/). A KP-Lab eszközök mindegyike az együttműködő tanulást, oktató és tanítvány egyenrangú kapcsolatán és folyamatos együttműködésén alapuló tudásszerzést támogatja. Vitaszoftverük ennek megfelelően nem egyszerűen leképezi, de elősegíti az együttműködést azzal, hogy könnyen kezelhető, változatosan felhasználható eszközöket kínál a problémák alapos feltárásában és közös megoldásához. A MapIt a gondolattérkép (mind map) továbbfejlesztéseként is értelmezhető, benne párhuzamosan több központi fogalom is felépíthető és strukturálható.

A MAPIT segítségével közös napirendet alakíthatunk ki, háttéranyagokat oszthatunk meg folyamatosan – akár az ülés közben feltöltve – egymással, és ehhez nem kell elhagynunk a megbeszélés virtuális terét, nem kell levelező rendszerünk hozz fordulnunk és megvárunk, míg mindenkihez eljut egy-egy küldeményünk. A résztvevők tehát „rá vannak kényszerítve”, hogy előkészítsék saját anyagaikat a megbeszéléshez (hiszen ehhez rendelkezésre áll saját mappájuk, s valószínűleg a többiek is ezt teszik, így hátrányba kerül a felkészületlen vitatkozó). Mikor elkezdődik a megbeszélés, mindenki folyamatosan elérheti azokat a képeket, adatsorokat, szöveges dokumentumokat, melyeket a többiek megosztásra szánnak, illetve mások anyagait is felhasználhatják a sajátjaik továbbfejlesztéséhez Érveink és ellenérveink is azonnal megjelennek egy közös munkaterületen, ahol az is látható, hányan várakoznak felszólalásra egy-egy téma kapcsán. Aki beszélt, legfontosabb gondolatait azonnal megjelenítheti a közös vitatérképen, vagy egy jegyzőt bizhat meg azzal, hogy beszéde közben itt tüntesse fel gondolatait. Az ülés végén a szoftver automatikusan készíti el az emlékeztetőt vagy jegyző-

60.ábra: A MapIt vitakövető szoftverrel készült vitatérkép

A 21. SZÁZAD ISKOLÁJA
könyvet, amelyben az egyes témákhoz rendeli a felszólalások jegyzetszöveget, s egymáshoz kapcsolja az érveket és ellenérveket. A kész dokumentumot, amely sokkal részletesebb, hitelesebb, mint egy szokásos emlékeztető, hiszen közös-ségi munka terméke, a szoftver levelező rendszere el is küldi azonnal valamennyi részvevőnek. (Példák a használatra: MOLNÁR P. és KÁRPTÁI, megjelenés alatt)

A MapIt gondolattérkép jellegű, a vita szerkezetét vizuálisan visszaadni képes ábrarajzoló funkciója a szóban elhangzó érveket és kijelentéseket diagramban ábrázolja, és összekapcsolja a háttéranyagokkal és a megbeszélés tartalmát szabályozó napirenddel vagy témaistával. Így, ha rendelkezésre áll a beszélgetés audio, vagy video felvétele, akkor a vita rekonstruálása csak percekkel van igénybe. Nem valószínű, hogy a szoftver támogatása nélkül a felhasználók képesek lennének létrehozni egy jól használható gondolati térképet, mialatt figyel-műket az elhangzott érvekre vagy saját megszólalásuk előkészítésére fordítják. A rendszer automatikusan állítja elő a térkép részeit. Az alkalmazás a személyes és online találkozók, megbeszélések, értekezletek segédeszköze kíván lenni azáltal, hogy az elhangzott beszélgetéseket, kijelentéseket, ötleteket, javaslatokat grafikus formában ábrázolja, a gondolatmeneteket, modellezi és reprezentálja, hogy a későbbiekben világosan követhetővé válhassanak a vita egymásba fonódó szárai. Egyik célja a viták, megbeszélések során felmerülő ötletek grafikus ábrázolása, a valós idejű konferenciátorzító eszközöként. Az alkalmazás megcélzott felhasználói elsősorban az egyetemek oktatói és hallgatói, valamint a vállalati szféra résztvevői, menedzserei, vállalatvezetői, alkalmazottai. A fejlesztők nem titkolt célja, hogy válthassanak a vita rekonstruálásában, olyan helyzetekben, amikor nem képesek kapcsolódnak a tanulás folyamatához.

Jelenlegi formájában az alkalmazás nem csak a megbeszélés rögzítése, hanem a megbeszélés szövegét manuálisan kell rögzíteni a beszélgetések során. Ez minden bizonytal sok hibalehetséget rejt magában szövegkihagyások, elgépelések formájában, és zavarhatja, gátolhatja a beszélgetés menetét – hiszen a rögzítés idejére le kell állnia a rögzítőnek, a beszélőnek és a hallgatónak is. Éppen ezért ha a szöveges rögzítés mellett a megbeszélés audio, vagyis visszahallgatható módon is rögzíthető, örömmel segítség lehetne mind a beszélgetések természetes menetének megtartásában, mind pedig a beszélgetések rekonstruálásában. A tervezett funkciók egyike a megbeszélés rögzítése hang fájl formájában^4

^4 Az, hogy a hanganyag streaming - vagyis folyamatos internetkapcsolat mellett, letöltés nélkül hallgatható-, vagy letölthető audio fájl legyen-e, milyen formátumban legyen rögzítve, mely részeit és mennyit rögzítsenek, és a tárolásának módja jelenleg is a fő fejlesztési kérdések közé tartoznak. A streaming média lehetővé teszi, hogy ne kelljen letölteni a hangfájlt, a letöltés közben már hallgatható a szöveg. Az offline pedig azt jelenti, hogy előzőre le kell töltőnünk a hanganyagot, amit ezután egy lejátszó szoftver segítségével tudunk meghallgatni.
A 21. század iskolája

A MapIt jelenlegi funkciói a megbeszélésen résztvevők szóváltásainak rögzítése és azonnali térképezése, grafikus megjelenítése, a hozzászólások, reflektálások gráfcsere – vagyis a beszélgetések tartalmi részét reprezentáló téglatépikák és a beszélgetések irányát, egymásutániságát ábrázoló nyílak folyamatábrájának kialakítása. A beszélgetések szálainak követhetőségét kihasználva a MapIt alkalmaz egy kutatócsoport értekezleteine elhangzottak elemzésére is.

Néhány felhasználási példa:

- **közös tanulás**: ahogy tanuláshoz összejövünk és megbeszéljük a tanulta-kat, a felmerült kérdéseket, a további stratégiákat, ötleteket, ezt úgy használhatjuk az alkalmazást mindezek szöveges rögzítésére és későbbi elemzésre, a tanulási összejövetel vizuális emlékeztetőjeként.

- **együttműködő tanulás**: hasonló módon használható több ember ismereteinek összegzésére is, az együttműködés, vagyis a közös diskurzus szöveges folyamatábrája remek áttekintést adhat magáról a megbeszélt témák ról.

- **viták levezetése**: ha a vitát vizuális és szöveges módon rögzítjük, akkor világosan nyomon követhetők a beszélgetés folyamatai, a résztvevők hozzászólásai, reakciói és a vita lezártaival összegezhetők, kiemelhetők az elhangzottak. Ugyancsak jól használható egy esetleges jegyzőkönyv elkészítésekor.

- **megbeszélések menedzselése**: a megbeszélések megszervezése és levezetése nagyon egyszerű, mivel eleve erre a célra terveztek és fejlesztik az alkalmazást. A megbeszélés megnyitásától kezdve a lezárásig és a történtek grafikus felidézéséig minden funkció könnyen előhívható. A következő funkciók érhetők el:
 - megbeszélés megnyitása
 - csatlakozás és távozás
 - megbeszélés lezárása
 - további résztvevők meghívása a megbeszélés előtt és alatt
 - új beszélgetéstéma indítása
 - hozzászólás létrehozott megbeszéléshez
 - kiemelések, külső források (internetről és saját fájlokból), tennivalók rögzítése

- **megbeszélések szerkezetének képi megjelenítése (vizualizációja)**: a megbeszélések egyes témakörei folyamatábrához és gondolattérképhez hasonló formában, vizuálisan jeleníthetők meg. Az egyes hozzászólások nyílak kötik össze a hozzászólások kapcsolódási pontjainak megfelelően, így egy pillantással átfogható a megbeszélés menete és struktúrája.
emlékeztető készítése: mivel rögzítjük a megbeszélést és a beszélgetések részleteit grafikus elemekkel, elmetérképhez és folyamatábrához hasonló beszélgetés folyamatot kapunk; ha bármikor elővesszük az ábrát, gyorsan és egyszerűen rekonstruálható a megbeszélés, így remek eszköz lehet vizuális emlékeztetőként.

eyüttműködő írás: nem feltétlenül csak élő megbeszéléshez használhatjuk az alkalmazást. Kizárólag írásos együttműködéseink is szervezhetők, amelyeken lehetőség nyilik közös dokumentumok, dokumentációk elkészítése. A létrejövő szövegek jól strukturálhatók, a változtatások egyszerűen követhetők, és szükség esetén lehetőség nyilik megjegyzések rögzítésére is. Például megtehetjük, hogy a közösen szerkesztett dokumentum egyes fejezeteit külön-külön beszélgetésként indítsuk meg, és együttműködően építsük fel. Ha szükséges, további alfejezeteket nyithatunk.

tudásmegosztás: az együttműködéssel létrehozott tudástérkép jó áttekintetőségének, strukturáltságának, összehangolt, szöveges és grafikus megjelenítéseinek köszönhetően remek segéd eszköz lehet a létrejött tudás megosztásában, közreadásában. Akár nyomtatott, akár digitális formában osztjuk meg munkatársainkkal, tanulótársainkkal, vagy barátainkkal az alkotásunkat, a benne foglalt gyorsan és könnyen nyomon követhetők, rekonstruálhatók, új dokumentumokba illeszthetők.

tudásépítés: mivel az alkalmazás eleve többszereplős közreműködést tesz lehetővé, rögtön adódik a többszereplős tudásépítés mint egyszerű felhasználási módszer. Ahogy beszélgetéseiket, reagálásaikat, kérdéseiket, hozzászólásait követhetik, úgy válík az egyes résztvevők egyéni tudása a kollektív tudás részévé. A beszélgetők egy témakör, vagy több témával mely szeletét járják körül és foglalják iráson és grafikus formában.

3.2.1.4 e-PBL (probléma alapú e-tanulás)

A televíziózás és az internethasználat elterjedése következtében következtetően a diákok tudásának egyre nagyobb hányada iskolán kívüli közegből származik. Az oktatás hatékonyságát jelentős mértékben befolyásolja, hogy ehez milyen mértékben tud alkalmazkodni az iskola (Csapó, 2005), hogy a tanárok mennyire veszik figyelembe, hogy (1) a gyerekek egyre többet tanulnak az iskolán kívül is, (2) a különböző médiumokból származó ismeretek nem minden esetben relevánsak, illetve (3) törekednek-e ezen ismeretek alakítására és integrálására.

Ha ez nem történik meg, akkor az iskolában tanultak legnagyobb része továbbra is az iskola falain belül marad, és nem kerül kölcsönhatásba az iskolán kívül szerzett ismeretekkel és tapasztalatokkal. „Az iskola akkor gyakorolhat tanulói rávalóban releváns hatást, ha a tudás sokféle forrásából minél többen látókörébe
von, és törekszik az egységbe szervezésére, integrálására; segíti tanítványait a különböző csatornákon érkező információk értékelésében, szelektálásában és hasznosításában.” (CsAPó, 2005). Mivel a diákok a legtöbb környezeti hatás az elektronikus médiumokon keresztül éri, számukra az az életszerű, ha ezeket is bevonják az iskolai oktatásba. Ha a tananyagot a tanulók számára releváns problémákba ágyazzuk, és ezeket a problémákat elérhető, az életből származó információk segítségével oldhatják meg, ezzel közvetlen kapcsolatot teremtjük a tudás elsajátítása és alkalmazása között. Ennek megvalósítására alkalmaz oktatási módszer a probléma alapú e-tanulás.

Az információs társadalomban nélkülözhetetlen képességek közé tartozik az információs műveltség (LOMHEIM, 2005), azaz az információk keresése, szelektálása, kritikai értékelése, rögzítése, majd megfelelő átalakítása, hatékony alkalmazása (CsAPó, 2005). Mindezket azonban csak a gyakorlatban, nagy mennyiségű információ feldolgozása során lehet megtanulni. Ennek gyakorlására szintén alkalmas a probléma alapú e-tanulás módszere.

A probléma alapú tanulás (PBL), illetve az e-PBL tanulóközpontú tanítási módszer. Alkalmazza a kooperatív, a kollaboratív és a projektmunka elemeit, de a probléma, a feladat megközelítésében alapvetően különbözik a többi oktatási módszertől. A diákok a tanulási folyamat során kis csoportokban (4–7 fő) dolgoznak, munkájukat egy felnőtt vagy idősebb tanuló segíti, őt szokás tutornak, facilitátornak vagy segítőnek nevezni. Feladata a beszélgetések, illetve a közös munka ösztönzése, nem a tudás átadása. A módszer kulcsfontosságú eleme a tanulási fázis elején adott autentikus probléma, amit a módszer eszközézhöz használ a tudás és a problémamegoldó képességek elsajátításához, fejlesztéséhez. A tanulási folyamat során az új információk elsajátítása a problémák elemzése és megoldása által, önszabályozó tanulással történik (Molnár, 2005).

A tipikus e-PBL környezet

Egy problémaalapú e-tanulási módszerrel vezetett óra nélkülözhetetlen eleme az internet és a számítógép adta lehetőségek minél teljesebb kihasználása, azaz a szinkron és az aszinkron módszerek együttes alkalmazása (Főző, 2006). Az óra a korábban tanultak ismétlésére és felelevenítése helyett egy probléma-helyzet felvetésével kezdődik, ami ideális esetben nem egy konkrét probléma, csak probléma-helyzet. A probléma felismerését nehezíti, hogy azt nem előzi meg a probléma megoldásához szükséges korábban tanult ismeretanyag fel-elevenítése, vagy egyéb más, a probléma megoldásával kapcsolatos utasítás sem (részletesen lásd Molnár, 2005).

A helyzet megismerése után a diákoknak első lépésként el kell dönteniük, hogy probléma áll-e fenn, s ha igen, mi lehet az. Második lépésként a diákok kiscsoportban összegyűjítik, amit a problémával kapcsolatban tudnak – legyen
ez előzetes ismeret vagy a problémahelyzetet ismertető szövegből kihámozott információ –, amire szükségük lehet a probléma alaposabb megértéséhez, esetleges megoldásához, az előzetes hipotézisek megfogalmazásához, azok ellenőrzéséhez stb. Meglévő ismereteik alapján ötleteket gyűjtenek (brainstorming) a probléma potenciális értelmezési lehetőségeire, illetve a megoldási módokra.

Ezt követően felosztják egymás között a feladatokat, azt, hogy ki mintek és hol néz utána. E fázisnak leghatékonyabbá tétele érdekében érdemes a probléma alapú tanulási módszer iskolai alkalmazása előtt egy olyan oktatási egységet beiktatni – akár a PBL-módszer segítségével –, amelyben a diákok összegyűjtik, rendszerezik és értékelik az információkészlete helyeit, lehetőségeit, majd a gya korlatban alkalmazzák az elsajátítottakat.

Amikor a diákok visszatérnek a csoportba, nem csak egyszerűen ismertetik az információgyűjtés eredményét, hanem arra is felhasználják az új ismereteket, hogy szükség szerint felülvizsgálják a problémát. Ehhez nélkülözhetetlen az információ elemzése, kritikus kezelése. Ki kell választaniuk a megoldáshoz szükséges információkat, a válasz, illetve a megoldás érdekében ezeket szintetizálniuk kell. Megfogalmazzák, és érvekkel támasztják alá a javasolt megoldást, majd többféle módon, például önértékeléssel és csoportértékeléssel is visszatekintenek a végzett munkára. Főként arra a kérdésre keresnek választ az értékelés során, hogy megoldották-e a problémát, és hogy ment a munka.

A probléma alapú tanulásban a problémamegoldás lehet hosszadalmas és körkörös folyamat is, mivel az új információk új problémákat vetethetnek fel, vagy át is értelmezhetik az eredeti problémát, aminek következtében előlről indul a folyamat. A probléma megoldása során a diákok egymást tanítva haladnak előre, ami kedvező hatással van mind az éppen aktuális tanító, mind a tanított diák társas és tanulmányi fejlődésére.

A tanár szerepe győkeresen eltér a hagyományos tanári szereptől, ahol a tanár határozza meg a tanulás tartalmát, ütemét, közvetlen utasításokat ad, és ő a helyes válasz birtokosa. A PBL órákon a tanár a gondolkodási folyamat segítője, ő a kutatás stratégiájának esetleges modellje, a felfedezés irányítója (GALLAGHER, 1997), aki szükség esetén segít a tanulóknak a kutatási kérdések pontos megfogalmazásában. Meghatározó szerepet játszik abban, hogy a diákok jó önszabadló tanulókká váljanak. A hagyományos, a problémaalapú és a digitális eszközökkel segített probléma alapú tanulás modelljének összehasonlítását mutatja a 61. ábra.

Hazai és nemzetközi szinten is egyre gyarapodik azon tanárok köre, akik különböző tantárgyak tanítása során sikeresen alkalmazzák ezt a módszert (l. pl.: MOLNÁR, 2004, 2008; TÖRLEY, 2006; SEJTES, 2006; ARTS és mtsai, 2002; ACHTENHAGEN, 2001; OLIVER és OMARI, 1999).
3.2.2 Online kommunikáció

3.2.2.1 Windows Live Messenger

A Messenger az egyik legnépszerűbb azonnali üzenetküldő program. Saját fiókkal belépve láthatjuk, hogy ismerőseink elérhetőek-e, azonnali üzenetváltásra van mód, de lehetőség van élő hangra, vagy akár webkamerás beszélgetésre is. Az épp nem bejelentkezett partnereknek is hagyhatunk üzenetet, melyet belépéskor megkap.

A Messenger rengeteg szolgáltatása teszi olyan elterjedtő, hiszen a felület szinte teljesen testreszabható, lehetőség van a szöveges üzenetek mellett hangkülek, vagy szabadkézi rajzok küldésére, és aki kevésbé jártas a számítógép kezelésében, Messenger partnerétől kérhet távsegítséget, így a szakértő a világ másik feléről is irányíthatja az adott gépet, így villámgysorasan elvégezheti a szükséges teendőket.

Aki csak néha egy-egy mondatot akar váltani kollégáival, elég, ha a háttérben futtatja, ha valaki üzenetet ír, a program a képernyő alján, illetve hangjelzéssel figyelmeztet. Akár többen is beszélgethetnek konferenciabeszélgetésben.

Fiatalok előszerelettel csetelnek barátaikkal, lehetőség van tetszőleges betűtípus használatára, egyéni hangulatjélek, vagy hangos üzenetek küldésére. Órán, ha laptozon jegyzetelnek, az óra zavarása nélkül meg tudnak kérdézní egy-egy nem hallott mondatot osztálytársaitól. Délután, a házi feladatok írása közben tudják tartani a kapcsolatot, és segíthetik egymást, de nem igényel folyamatos odafőzést.
Tanár-diák kapcsolat formája is lehet a Messenger. A diák meg tudja kérdezni tanárától a házi dolgozat határidejét, vagy épp elküldheti elkészült művét.

A Windows Live Messengerrel fájlokat is küldhetünk, több fájl küldéséhez pedig használhatjuk az ún. megosztási mappákat. A megosztási mappába csak be kell másolni a küldeni kívánt fájlokat, a program leszinkronizálja azt. Ha valamelyik fél kilép, belépéskor folytatódik az átvitel.

3.2.2.2 Windows Live Fotótár

A Fotótár segítségével egyszerűen kezelhetjük fotóinkat. A fényképek készítési ideje alapján a program rendező képeinket naptárszerűen.

Ha le akarjuk vetíteni az osztálykirándulás fotóit, ki kell jelölnünk a kirándulás napjait, a képetítés segítségével akár automatikusan, akár kézileg váltva teljes képernyőn megtekinthetjük a kiválasztott fotókat!
A képeket elláthatjuk címkékkel, melyek alapján különböző időpontokban készült, de valahogyan kapcsolatban álló képeket kereshetünk. Elláthatjuk „kísérlet” címével az iskolai napok fizika bemutatóját, és egy átlagos tanórán készült fotót. A felsorolt kulcsszavak közül a „kísérlet” szóra kattintva megkapjuk az összes eddig készült képet kísérletekről.

A képeken javítások végezhetők, vörösszem eltávolítása, levágás, és a program képes a kiválasztott fotókból panorámaképet készíteni automatikusan. Egyéb módosításokhoz két kattintással megnyíthatjuk a képet egy tetszőleges képszerkesztőben.

63.ábra: Windows Live Fotótár
3.2.2.3 Windows Live Spaces (http://spaces.live.com)

A Live Spaces egy személyes oldal, melyre szintén Windows Live ID-nk segítsé- gével léphetünk be. Írhatunk blogot, azaz webnaplót, melyhez csatolhatunk fényké- peket is, és lehetőség van arra, hogy barátaink kommentálják bejegyzéseinket.

Aki rendelkezik Windows Live Fotótárral, letölthet egy neki megtetsző albumot más Spaces fotóalbumáról.

A Live Spaces az ismerősökkel való kapcsolattartás eszköze is, bejelölhet- jük barátainkat (Live Messenger partnereink alapból barátnak számítanak), akik ezután saját Live Spaces oldalukon láthatják a velünk kapcsolatos újdonságokat, beleolvashatnak legfrissebb blogbejegyzésünkhöz, vagy megtekinthetik új fotó- albumunkat. Fordítva is, Spaces oldalunk kezdőlapján láthatjuk, miben frissült barátaink Spaces oldala.

64.ábra: Windows Live Spaces
3.2.2.4 SkyDrive (http://skydrive.live.com/)

Egy személyes tárhely, ahol bármilyen fájl tárolható. Ha szükséges, privát mappánkból a világ bármely pontjáról elérhető fontos dokumentumunk. Partnereinkkel megoszthatunk bármilyen fájlt, akár videókat is, hiszen az 5 GB-os tárhely nagy mennyiségű adat tárolását teszi lehetővé. Megoszthatunk nyilvánosan is fájlokat, ekkor bárki hozzáférhet megosztásainkhoz.

A fájlok feltöltése egyszerű, egy kis kiegészítő program segítségével a Windows Intézőből „fogd és vidd” módszerrel belehúzhatjuk fájljainkat a kívánt SkyDrive mappába. Ha rendelkezünk Windows Live ID-vel (ami a Messenger használatahoz is szükséges), csak be kell lépnünk az oldalra, személyes SkyDrive tárhelyünk máris elkészült! Amennyiben nincsen, néhány perc alatt elkészíthető felhasználói fiókunk (Hotmail fiókhoz automatikusan elkészül), és egy e-mail cím – jelszó párossal használhatjuk az összes Windows Live terméket.

A SkyDrive közösen működik a Windows Live Spaces-sel, a fényképalbum gomb megnyomásával átnavigál Windows Live Spaces oldalunkra.

65.ábra: SkyDrive
3.2.3 Az egyéni tanulás támogatása

Kárpáti Andrea

3.2.3.1 A személyes tanulási tér

A személyes tanulási tér (Personalised Learning Environment, PLE) a számítógéppel segített tanítás és tanulás új modelljeinek egyike, válassz a „behálózott társadalom” igényeire. Az informatikával az iskolában találkozó Net Nemzedék (Net Generation, vő. TAPSCOTT, 2001) még örömmel fogadta a nyomtatott könyv helyett a mozgóképes, hangos oktató CD-t, és otthonosan mozgott egy távoktatási keretrendszerben. A nyolcvanas években születettek, a Net Benszülöttek (Net Natives), akik egyidősebb a személyes tanulási tér, (Virtual Learning Environment, VLE, vő. könyvünk 3.2. fejezetét), az interaktivitás számukra már nem csak a megadott lehetőségek közötti választás szabadságát jelenti. Ők személyes tanulási térre vágynak, ahol nemcsak felhasználói, de alkotói szerepet is biztosít nekik kísérőjük a tudásszerzés útján: az iskola vagy a munkahely. A Net Benszülöttek (s példájuk nyomán mi, idősebb e-tanulók is), magunk kívánjuk meghatározni tanulási folyamatunk minél több összetevőjét. A központosított tudásszerzés helyett az egyéni igényeknek megfelelő, bárhogy, bármikor elérhető, testre szabható ismeretszerzést igényeljük, s cserebe szívesen megosztjuk másokkal a tudást, amit létrehoztunk. Az interneten vagy belső hálózaton összekapcsolódó számítógépek mögött ülő tanulóközösség változó összetételű, nemzeti és/vagy nemzetközi tudáskonstruáló csoport is egyben. Ebben a részben bemutatjuk, hogyan hasznosíthatja az iskola ezt a közösségi tudást, hogyan integrálhatja szükségszerűen központosított oktatási kultúrájába az egyéni tudásépítés új digitális eszközeit, módszereit. Előbb azonban tekintsük át egy táblázat segítségével, milyen képességekre van szükségünk ahhoz, hogy hatékonyan működjünk ebben a személyes tanulási térben!
Ebben a kötetben sokszor hangsúlyoztuk, hogy az oktatási informatika legfőbb erénye az, hogy a hagyományos oktatási eszközöknél lényegesen nagyobb esélyt ad a korszerű pedagógiai módszereknek, – s itt elsősorban a személyre szabott tudásközvetítés paradigmáira gondolunk. A személyes tanulási tér működése szempontjából leglényesebb ilyen modell a problémaközpontú oktatás, (Problem Based Learning, PBL, vö. OKI, é. n.), amelyben a tanulók szakértői szerepet kapnak, és a problémákkal abban a formában szembesülnek, ahogy azok a munka világában kerülnek majd eléjük. Már a megoldandó feladat pontos megfogalmazása is része a tanulásnak, s a hiányos információk kiegészítésével,
hiteles információforrások, hasznos eszközök és a problémákra többféle megoldást kidolgozva – határidőre! – olyan helyzeteket elhítenek meg, amelyekkel az iskolát elhagyva, naponta találkoznak majd. A tanár nem vállalja hagyományos szerepét, lemond arról, hogy elvezesse tanítványait egy (tankönyvekből merített), elméleti megoldás felé. A diák az, akinek felelősséget kell vállalnia saját tanulási folyamataiért. Több tantárgy ismeretanyagát aktivizáló, komplex problémák adják a problémaközpontú tanterv fókuszpontjait, s maga a tanulás is tanulóközpontú. A tanárok segédei szerepet játszanak, a tanulók pedig egyénileg, párból vagy kisebb csoportokban dolgoznak. Az értékelésben is az ön- és társértékelés kerül előtérbe a tanári minősítéssel szemben.

Könnyű belátni, hogy a PBL egy hagyományos tanulási térben csak igen nehéz valósítható meg informatikai eszközök nélkül, hiszen ahány tanuló(csoport), annyiféle feladatmegoldó eszköztárra lehet szükség, s az együttműködéshez szükséges kommunikáció sem zavarhatja a többiek munkáját. A virtuális tanulás korábban ismertetett eszközöket lehetővé teszik az információforrások egyidejű használatát csakúgy, mint a valós idejű (beszélgetéses), vagy késleltetett (levelezéses) kommunikációit, az információk gyors megosztását vagy a személyre szabott – s csak az illető számára hozzáférhető, másokat nem zavaró vagy befolyásoló – segítségnyújtást, értékelést. Az oktatási informatikával támogatott PBL az élethosszig tartó tanulásra és a munkára egyaránt felkészít, hiszen hatásosan fejleszt jó néhány, a munkahelyen megkövetelt, s az önfejlesztéshez is nélkülözhetetlen kompetenciát:

- Alkalmazkodás a változó munkakörnyezethez
- Reagálás a változó feladatokra: a környezet változtatása
- A problémamegoldás módszereinek alkalmazása új helyzetekben
- Kritikus gondolkodás
- A nézőpontok különbözőségének felismerése, elfogadása - sikeres együttműködés a csoportban
- Saját tanulási hiányosságok és erősségek felismerése: az önirányító tanulás elősegítése
- Hatékony kommunikáció
- Szervezői, vezetési készségek
- Különböző információforrás-típusok együttes alkalmazása

Mindezek a kompetenciák a tanulási folyamatban akkor lesznek igazán hatásosak, ha a tanuló ismeri és alkalmazza az önszabályozó tanulás módszereit is. (MOLNÁR, 2003). Ez a tanulási forma tekinthető a PLE pedagógiai hátterének, a személyes tanulási igényeknek megfelelő környezet kialakítása ebben a formában.
Általános tanulási helyzet

- „Önkéntes”, a személy által meghatározott.
- A személy által kezdeményezett és végrehajtott.
- Belsőleg motivált.
- Valóságos eszközök, valóságos szituációk.
- A tanulási tapasztalat inkább minőségi.
- Inkább folyamatorientált.
- Inkább szintetizáló.
- Leginkább flow-vezérelt – az optimális élénnyel elérésére törekszik, amely itt a kompetenciaszintet éppen meghaladó, ezért kihívást jelentő feladat megoldását jelenti (Csíkszentmihályi, 2002).
- Nincs időkorlát, akkor kezdődik és végződik, amikor szükséges.
- Nem kötelező.
- Az egyén által követett és értékelő folyamat, és gyakran mások által elindított értékelés adja az alapját a visszacsatolásnak.
- Megmarad a személy szabadsága, többféle, mikor energia befektetése szükséges; mikor éri meg neki belekapcsolódni egy tevékenységbe.

Iskolai tanulási helyzet

- Jórészt a tanár által meghatározott.
- Jórészt a tanár által kezdeményezett.
- Kívülről tevődhet a motiváció.
- Modellált, generált eszközök, szituációk.
- A tanulási tapasztalat leginkább mennyiségi.
- Inkább teljesítményorientált.
- Inkább analitikus.
- Nincs flow élmény
- Meghatározott időkeret.
- Kötelező.
- Jórészt a tanár által követett és értékelő folyamat.
- Korlátozott szabadság, főként a tanár dönti el a tevékenységek menetét.

3. táblázat: A természetes és iskolai tanulás különbségei (Molnár É., 2003)
A PLE kialakítása lehet akár a tanuló vagy a tanár műve, mindenképpen szükség van a hagyományostól eltérő, a központosított lő az egyedi felé mutató tanulási út elfogadására, sőt, a tanulónak ezt kell előnyben részesítenie. Fontos, hogy az oktatási folyamat minden szereplője (a szülő vagy munkaadó és az iskolavezető is) legyen meggyőződve arról, hogy a tanuló képes és hajlandó az önálló tanulásra. Mentorával együtt birtokolja azokat az ismereteket, amelyek – a megfelelő informatikai kompetenciával párosulva – sikeressé teszik munkájukat a jól szabályozott funkciókkal és jogosultságokkal bíró VLE-nél szabadabb, ezért a felhasználóval szemben több és más igényeket támasztó környezetben. Ez a tanulási környezet önálló gondolkodásra, tervszerű, önálló cselekvésre nevel – s éppen az, amire a 21. századi munkakultúrában a leginkább igény van.

A PLE kialakításakor tehát elsősorban nem technikai, hanem oktatási modellről van szó, amelyben az új tanulási környezet eszköztárára jelenti a pedagógiai fejlődés motorját. A hagyományos oktatási informatikai környezetben a tanulónak a rendszer működtetője jogosultságokat ad: hozzáférést a (kor)osztálya számára előre kijelölt tananyaghoz. (Egy másik csoportéhoz azonban már nem – virtuális iskolában sem létezik spontán „osztályugrás”!) Az iskola szinte mindig saját e-mail cimet ad (nem fogadja be a már meglévőt), saját vitakörnyezetet alakít ki (ahelyett, hogy a diákok által látogatott fórumok valamelyikén építené ki oktatási teret), és megkötésekkel engedélyezi – ha egyáltalán lehetővé teszi – saját anyagok felőltését az iskolai weboldalakra. A PLE filozófia ezzel éppen ellentétes: eszerint a diák „virtuális hozománya” értékek be kell fogadni mindazokat az eszközöket, amelyeket rutinosan használ, meg kell ismerni és ha minőségük megfelelő, integrálni kell az információforrásokat, amelyeket előnyben részesít, és a lehető legnagyobb mértékben alkalmazni kell mindazt a tudást és tapasztalatot, amellyel a Net Bennszülött gazdagíthatja az iskolai közösséget.

Áttekintve a PLE eszközöket láthatjuk, hogy ezek sima átmenetet biztosíthatnak a tanulás, a munka és a magánélet között. A PLE akkor működik jól, ha a már ismert eszközökkel az oktató segítségével a tanuló olyan inspiráló környezetet állít össze, amely lehetőséget biztosít számára, hogy önszabályozó módon, a tananyagot problémacentrikus feladatok során legyen képes elsajátítani. A saját oktatási környezet létrehozásakor a tanuló (vagy a továbbképzését saját kezébe véve, élethosszig tartó tanulási környezetét szervező felnőtt munkavállaló) legtöbbször az ingyenes szolgáltatásokból válogat. Ahhoz, hogy tanulási folyamatait hatékonyan menedzselje, a következőkre biztosan szüksége lesz:

- **eszközök a tanulási célok kitűzéséhez**
 - a tanulási célokat meghatározó fogalomtérkép (concept map)
 - a célok közötti kapcsolatot jelző gondolattérkép (mind map, pl. Maplt, vő. 3.2.1. rész)
- **tanulásszervezés** – a tartalom és a folyamat irányítása (pl. Sharepoint, vagy az Outlook naptár eszközei, vő. 2. fejezet)
- **projektmenedzsment ismeretek**. A felhasználható szoftverek és funkcióik áttekintéséhez kiindulópont lehet a http://projektmenedzsment.lap.hu/, a szoftverek közül az iskolában található egyéb szervezési eszközökkel jól társítható a Microsoft Project szoftver.
A tanulással kapcsolatos gondolatait, problémáit, élményeit közvető digitális tanulási napló (learning blog, erről bővebben ebben a részben, később)

saját produktumok megosztása
(pl. Groove, vő. 3.2.1. rész, e-portfolió, ld. alább)
 - szövegek megosztása
 - álló- és mozgóképek keresésére és megosztására szolgáló környezet
 - hivatalos dokumentumok megosztása
 (pl. diploma, nyelvvizsga, kitüntetések, dijak)

saját digitális könyvtár, ahová a számára szükséges dokumentumokat rendszerezve, könnyen kereshető formában feltöltheti

szakmai levelezés, fórum: kommunikáció a társakkal a tanulási folyamat során (Pl. MSN, Skype, CTM, vő. 3.2.1. rész)

magánlevelezés, fórum: társas élet
(social networking, baráti kapcsolatok ápolása)

megjegyzések, hivatkozások a naplóbejegyzésekhez való hozzáfűzését segítő szoftver

személyes tulajdonságok, magánélet megjelenítése (personalization), a személyes ízlésnek megfelelő színvilág, magánéleti információk, pl. hobbik, szövegben és képen stb. A PLE „megszemélyesítése” olyasmi, mint a munkahelyi írásalattal tett családi fotó és utazási emléktárgy.

digitális aláírás az egyes dokumentumok hitelének igazolására

asztali számítógépes kliens (desktop client) az offline használathoz és egyéb oktatási alkalmazások – pl. az intézményi VLE – eléréséhez

A PLE előnye, hogy moduláris felépítésű, tehát nem szükséges egy virtuális környezetbe lépve, annak összes alkalmazását azonnal felhasználni ahhoz, hogy személyes tanulási területét kialakítsuk. Ez nagy előnye a PLE-nek a VLE-hez képest, hiszen egy távoktatási keretrendszerben nincs mód csakis az üzenetküldő funkciót használni, ehhez regisztrálni kell, kurzus teret létrehozni, hallgatókat beépíteni stb. A tanár, akinek nincs még megfelelő tapasztalata az e-tanulást segítő eszközök terén, jól teszi ezért, ha PLE funkciókkal kezd meg az ismerkedést. A PLE épülhet egyetlen alkalmazásra, vagy több alkalmazás együttes használata is. Egy tanulóközösség például elkezdheti munkáját a Microsoft Learning Gateway-ben (MLG, vő. 3.2.1), majd a nyári szünetben átérhet a Skype használataéra, amely bármelyik nyaralóhelyen, ahol internet kávézó működik, szabadon hozzáférhető, és élményeiket a YouTube és a Flickr (vő. 3.2.4.1. rész) segítségével oszthatják meg egymással. Szeptemberben azután valamennyi információt feltölthetik egyéni vagy osztálymappájukba az iskolai honlapra vagy az MLG-be, ahol linket illeszthetnek beszámolójukba, amely „kivezeti” az érdeklődőt a közös-
ségi kép- és szövegmegosztó oldalakra. A PLE környezet fontos jellemzője, hogy a formális tanulás színhelyét (az iskola digitális taneszközeit, vagy komplett virtuális tanulási környezetét) együttesen használja az informális tanulás színhelyeivel: együttműködés, átjárás van a két rendszer között.

A legtöbb PLE környezet középpontjában egy digitális jegyzetfüzet vagy napló (web blog, magyarul is használt rövidítéssel: blog) található. Ez a műfaj az újságolvasók számára valószínűleg a politikából ismerős, hiszen a napi eseményekre közvetlenül és gyorsan reagáló, hírértékként híres politikus naplók vagy a napilapok blog szoftverei segítségével írt és ugyanott gyakorta idézett publicista naplók a napi élménybeszámolók intim műfaját a nyilvánossággal való informális párbeszéddé változtatták. Milliók írnak személyes életüket követő naplót, amelynek formátuma, színei, illusztrációi mind az önkifejezés szolgálatában állnak. A kutatási vagy tanulási célját írott blog néhány, azonos problémákon gondolkodó ember közös alkotása, amely számon tartja a gondolatok születését, fejlődését és produktumokkal alakulását.

67. ábra: Pedagógiai kutatás blog környezet (KP-Lab)
A naplót vezető személy számít arra, hogy a többiek megjegyzéseket fűznek majd az egyes munkafázisokat azon melegében kommentáló, néha indulatos bejegyzésekhez. A blog a gondolkodási folyamat kiváló lenyomata, olyan dokumentum, amely lényegesen többet árul el a *tanulói* és *tanulási szokásairól, eredményeiről és kudarcairól* vagy *kísérletezőiről*, (munkája elméleti megfontolásairól, gyakorlati problémáiról, a csüggedés és nekirugaszkodás hullámairól) mint egy interjú, vagy kérdőív. A blog tipikusan a következő részekből áll:

- **Fő szöveg**: a naplói bejegyzései, melyek általában napi, néha csak heti gyakoriságúak
- **Megjegyzések az egyes bejegyzésekhez** (angolul *comment*, innen származik a magyarul is használt *kommentezés* kifejezés). Az oktatási blogban különösen hasznosak, hiszen olyan tudáselemekeket tartalmaznak, melyeket mások tesznek hozzá egy-egy tanulási produktumhoz. Pl.: a tanár kommentálja a tervezetet, a diáktársak a vázlatokat, a megrendelő a kész mű első változatát.
- A tartalomhoz kapcsolódó anyagok, melyeket a blog szerzője vagy olvasói csatlakoztatnak egy-egy bejegyzéshez (*feed*)
- Blogvezetési funkciók
 - Bejegyzés készítésére szolgáló ablak
 - Megjegyzések hozzáfűzésére szolgáló ablak
- Blog olvasási funkciók
 - Keresés a szövegben
 - Korábbi bejegyzések tára

- **fejlődési EP**: – szakmai életrajz, hitelös dokumentumokkal (pl. digitális aláírással érvényesített bizonyítványokkal) és fontosnak ítélt saját művekkel kiegészítve. Valódi, papír alapú gyűjteménnyént pl. a művészeti képzésben használatos, a köznyelvben ezt nevezzük *portfoliónak.*
- **önértékkelő EP**: a fentieken kívül olyan személyes digitális feljegyzéseket is tartalmaz, amelyek annak bizonyítására szolgálnak, hogy valaki ismer egy tudásterületet, illetve képes elvégezni valamilyen tevékenységet.
Ez az EP magában foglalja a tartalomra vonatkozó személyes megjegyzésekét is: van benne önértékéles és, annak leírása, hogy egy-egy feladat elvégzése vagy egy szakképzettség megszerzése mit jelentett a szerző fejlődése szempontjából.

- **ábrázoló** *(bemutató)* EP: válogat az életműben, és csak azokat a munkákat tartalmazza, egy adott feladatra való alkalmasságot igazolják. A (megpályázott) feladattal (állással) kapcsolatos valamennyi fontos dokumentumot (pl. zsűrik, jelentős oktatók értékeléseit, ajánlását) a művekhez kapcsolva tölti fel a szerző. Nagy előnye, hogy a jelöltet elbíráló felvételi bizottság (vagy munkaadó) egy felületen, gyorsan megnézheti a számára érdekes munkákat és azok értékelését is.

A három típust különböző tanulási helyzetekben, a szerző céljainak megfelelően együtt is alkalmazhatjuk (pl. egy fejlődési EP képességcsoportok szerint tartalmazza a produktumokat, így megkönnyítve olvasója dolgát.) Természetesen nem csak egyének, hanem közösségek (pl. egy, diákokból álló projekt munkacsoport, szakkör, tanári munkaközösség) is készíthet EP-t, hogy így mutassa be tevékenységét. Az EP anyagának összegyűjtéséhez, a gyűjtemény megformálásához és internetes megjelenítéséhez szükséges képességeket alább mutatjuk be.

68.ábra: E-portfolió készítése (Szerencsés, 2007)

- **fogalmi és logikai képességek**: ötletesség, az információkeresés és szűrés képességei (ld. e kötet külön alfejezetében), tudásszervezés, osztályozás, vázlatkészítés, folyamattervezés, írás, vizuális tervezés, művész szerekésztes.
Az Európai Unióban a szabványosításra irányuló törekvések sorában kiemelt szerepet kapott az EP, hiszen ezzel az eszközzel – ha világnyelven készül – bármelyik ország oktatási intézménye vagy munkáltatója részletes és hiteles képet kaphat a jelentkező szakmai teljesítményéről és számos, az elvégzendő feladat vagy a tanulmányok folytatása szempontjából fontos személyes tulajdonságáról is. Így egyszerűbben érvényesíthetők a mobilitáshoz kapcsolódó jogok és gyorsabb a végzettségek kölcsönös elismerése. Az EP jól integrálható a szakképzettség elismerésének immár az EU valamennyi országában használatos új dokumentumával, az Europass- szal is6.

De vajon készen vagyunk-e arra mi, oktatók, hogy személyes tanulási tereket hozzunk létre diákjaink számára? Időről időre felmerül, hogy az iskolai évfolyamok átjárhatóak legyenek, a tehetségesek osztályt ugorhassanak. Vannak iskolák, ahol ez megoldható, de nem kevés szervezési munkával jár, akárcsak a képességek szerinti bontás a nyelvoktatásban és a művészeti képzésben, (ahol a képesség-szintek szerinti csoportképzés nem számít szegregációnak). A felsőoktatásban a tanárjelölt olyan virtuális tanulásszervezési és oktatási környezettel találkozik, amelynek egyik fő funkciója annak megakadályozása, hogy a hallgató olyan kurzus tananyagába is belepillanthatson, amelynek látogatására nem jogosult. Min-

A 21. SZÁZAD ISKOLÁJA

A 21. század iskolája

den lapon azonosítót és jelszót kell használnia, ha társainak levelet akar írni, erről már a szoftver lebeszéli öt is és tanárát is. (A diákok és oktatók közötti kommunikáció kötelező színhelye a fórum, kurzuslevelet csak igen nyomós okkal írhatunk. Az oktató – egyszerűen – kiküldhet hirdetményeket az e célra szolgáló virtuális hirdetőtábla segítségével.) A távoktatási környezetek támogatják a személyre szabott mentorálást, de ezek a – zömmel – díjköteles szoftverek nem támogatják az ingyenes, közösségi alkalmazásokkal való integrációt. (A kevés kivétel egyike a szabad forráskódú Moodle, amely alkalmas arra, hogy egy PLE része legyen.) A számítógéppel segített tanulás a felsőoktatásban jelenleg használt terei tehát nem készítenek fel arra, hogy tanárként, a közoktatásban személyre szabott virtuális környezeteket hozzunk létre. A fejlődés iránya mégis ez, hiszen nem-

69.ábra: Egyszemélyes tanulási környezet: a Japanoldal.net (http://japanoldal.net/)
csak a diákok használnak naponta közösségek által fejlesztett tartalmakat (mint a Wikipédia, amelynek magyar változatához e könyv készülése idején íródott meg a százezredik szócikk) (http://hu.wikipedia.org/wiki/Kezd%C5%91lap) hanem a pedagógusok is – igaz, még csak magánemberként.

A PLE-ben megváltozik az informatikai eszközök és szolgáltatások koordinációja. A hagyományos rendszergazdaszerep az ellenőrzés, karbantartás, felújítás, hibajavítás, engedélyezés és tiltás. A PLE környezetet gondozók feladata ennél kevesebbet, illetve mást. A PLE környezetek karbantartói, felújítói, hibajavítói maguk a felhasználók. Az engedélyezés és tiltás sokkal érzékenyebbet szabályozási rendszert feltételez, mint az, amely egy jól körülrőlható, s ezért könnyen szabályozható virtuális eszközpark használóira vonatkozik. A rendszergazda feladata itt, hogy harmonizálja a közösségi és a formalizált, szolgáltatások által kialakított virtuális környezeteket, és segítsen elkerülni a különböző formatumokból eredő inkompatibilitást. A PLE szempontjából lényeges tudásmegosztó eszközökkel ([Wikipédia, Flickr, YouTube](http://hu.wikipedia.org/wiki/Kezd%C5%91lap)) könyvünk 3.2.4.1. részében még lesz szó.

Hogyan alakítsunk ki PLE-t az iskolában? Technikai, módszertani és tartalmi változtatásokra egyaránt szükség lesz, de egyik sem jelent olyan gyökeres változást, mint amikor az első PC-t és projektort bevittük az osztályterembe, s először a katedra elé, az írásvetítő helyére, később néhány társával egy csoportmunkasarokba állítottuk. Ezekre a változtatásokra van szükség:

- Az iskolai e-mail helyett használhassa mindenki oktatási célokra is azt az e-mail címét, amelyiket erre alkalmasnak lát.
- Használják a tanároknál is a diákok által kedvelt kommunikációs csatornákat (fórum, chat) olyan szoftverekkel, amelyek a diákok szerint a digitális kommunikációra különösen alkalmasak (MSN, Skype).
- Legyen elfogadott oktató és kommunikációs eszköz a mobiltelefon, legalább üzenetváltási céllal (SMS).
- Ne csak az egyes számítógépek legyenek az internettel összeköve, hanem – egy vezeték nélküli internet kiszolgáló (wifi) segítségével az iskola közösségi tereiben is legyen hozzáférhető az internet
- Ne faliújság vagy reprezentatív, iskolát bemutató kiadvány, hanem közösségi tartalomcseré fóruma legyen az iskolai honlap. Virusirtó szoftverekkel, rovatszerkesztőkkel, ne pedig tilalmakkal befolyásoljuk a fájlok feltöltését.
- A tanárok sajátítsák el a tanulásszervezés és értékelés új, a személyes internetes kommunikációból átvett formáit (pl. tanulási blog) és a munka világából átvett eszközöket (pl. fogalom- és gondolattérkép), valamint a pedagógiai paradigmákat szolgáló technológiai újdonságokat (pl. adaptív tesztkörnyezet).
A tanárok is személyes tanulási teret! Használják a PLE eszközöket először saját munkájuk tervezésére, szervezésére és dokumentálására, majd tapasztalataikat ültessék át pedagógiai gyakorlatukba!

Kezdetnek az is eléggé, ha az intézmény digitális tartalomzolgáltatásért felelős munkatársa bátoríthatja a tanulókat vagy dolgozókat, hogy osszák meg azt a tudást, amit összegyűjtöttek: tegyék közzé például az óравázlataikat, az oktatásban jól használható segédanyagaiakat. Ha hajlandók erre, a szakmai munkaközösségek már meg is tették az első lépést a személyes tanulási tér kialakításában. Ha a tanulókat megtanítjuk arra, hogy számukra a későbbiekben is fontos dokumentumokat (a dolgozatokra való felkészülést segítő jegyzeteiket, jól sikerült előadásokat, írásaikat, a tanári oldalakról letöltött segédanyagokat) személyes honlapjukon vagy számítógépükön mappákba rendezve tárolják, ők is elindulnak a digitális eszközökként kialakított személyes tanulási tér ki építése felé.

3.2.4.1 Prezentációs technikák

A korszerű oktatástechnikai eszközök jelenléte már a hagyományos osztálytermi, szaktantermi, laboratóriumi tanulási környezetekre is jellemző, kiszélesítő az oktató által alkalmazható módszerek körét. E technikai eszközök között említen-
dő az írásvetítő mellett a számítógéppel összekapcsolt projektor, a dokumentum kamera és az interaktív tábla. E technikai eszközök nagyban elősegítik a tanár szemléltető munkáját, melynek célja továbbra is „... az ismeretek ténybeli alapjainak feltárása”\(^7\). A szemléltetéshez olyan szóbeli kommunikációs módszerek társulnak, mint például az előadás, a magyarázat és az elbeszélés. E tanári kommunikációval kapcsolatban elvárásként fogalmazódik meg a szemléletesség, az érthetőség, az egyszerű, világos, magyaros kifejezésmód, az életszerűség, a konkrétság és az újszerűség. A magyarázat, amelyhez a leggyakrabban társul a szemléltetés célját tekintve elősegíti az összefüggések felismerését, a törvények, szabályok, tételek, fogalmak megértését. A szemléltető eszközök és ennek révén a szemléltetési módszerek az elmúlt 140 évben igen jelentős változásra mentek keresztül a magyar iskolában. Ha az 1868-as népoktatási törvény előírásainak megfelelően berendezett osztálytermet megnézzük (70. ábra), akkor a következő szemléltető eszközökkel találkozzunk: háromlábú tábla, térképek, szemléltető ábrák, golyós számológép, geometriai testek, növény- és ásványgyűjtemények. A 20. század második felében megjelent a diavetítő, a 8, ill. 16 mm-es filmlejátszó, az írásvetítő, a televízió, a videomagnó majd a század végén az infokommunikációs eszközök, melyek integráltak a korábbi analóg eszközök legfontosabb funkcióit. Így érkezünk el a 71. ábrán bemutatott korszerű osztálytermi tanulási környezethez, melynek elengedhetetlen tartozékai a számítástechnikai eszközök. Fontosnak tartjuk hangsúlyozni, hogy itt elsősorban nem a számítástechnika szaktantere, laboratóriumra gondolunk. Az informatikai eszközök szerves tartozékai ma már az osztályteremnek, kiszélesítik a tanár által alkalmazható oktatási módszerek és prezentációs technikák körét. A 72. ábra utolsó sorában látható számítógépek lehetővé teszik a tantárgyhoz kapcsolódó oktatóprogramok futtatását, az internetes kapcsolat révén a témához kapcsolódó anyagok gyűjtését, a gyakoroltatást.

\(^7\)NAGY Sándor: Az oktatás folyamata és módszer. 130. old.
A prezentáció egyébként latin eredetű szó, amely bemutatást, felmutatást, kiállítást jelent, vagyis prezentálni annyit tesz, mint bemutatni, felmutatni, kiállítani\(^8\). Kárpáti Andrea az oktatási szoftverek minőségének vizsgálata kapcsán a számítógépes prezentációt a kommunikációs eszközök közé sorolja (KÁRPÁTI, 2000). E mellett alkotó (szerkesztő) és demonstrációs (illusztrációs, szimulációs) funkcióit is betölt. A projektorral összekapcsolt számítógép kiválóan alkalmas PowerPointtal készített diasorozatok, prezentációk bemutatására, de arra is, hogy internetes kapcsolat révén felhívjuk tanulóink figyelmét egy, a tárgyhoz kapcsolódó elektronikus tananyagra, lejátsszunk egy kémiai vagy fizikai kísérletet bemutató animációt vagy videoneyagot. A projektorral összekapcsolt dokumentum kamera (73. ábra) alkalmas háromdimenziós tárgyak, modellek, makettek, könyveli képek, ábrák, táblázatok kivetítésére, biztosítva továbbá a számítógépi kapcsolatot is. Ez a két eszköz alkalmazás a korábbi episzkóp, epidiaszkóp, diavetítő és írásvetítő funkciójának egyidejű helyettesítésére.

E fejezet további része elsősorban a PowerPointtal támogatott prezentáció elkészítésével és alkalmazásával kapcsolatos kérdésekkel foglalkozik. Érintjük azokat a tanári kompetenciákat, amelyek egy PowerPointos prezentáció összeállításához, a technikai eszközök kezeléséhez és az előadás megtartásához szükségesek.

A prezentációs anyag elkészítésekor mindig szem előtt kell tartanunk azt az alapelvet, hogy a PowerPoint diasorozatot elsősorban tanár központú tanulási környezetben fogjuk alkalmazni, így ahhoz az előadás, ill. a magyarázat mód-szerére társul. A prezentáció a tanár szöbéli előadását, magyarázatát támogatja, kiegészíti, nem pedig helyettesíti. Így az sem tartalmával, sem pedig formátumával

\(^8\)Bakos Ferenc: Idegen szavak és kifejezések szótára. 532. old.
nem vonhatja el a tanulók figyelmét. Ez persze nem mond ellent az érdeklődés felkeltése és folyamatos fenntartása elvének. A PowerPointos prezentáció képes helyettesíteni a táblavázlatot, megkönnyíti a tanulók füzetben való vázlatkészítését, de nem szabad elfeledkezni arról sem, hogy a diatartalmak folyamatos jegyzetelése elvonhatja a figyelmet a tanár magyarázatáról. Éppen ezért előadásunk ütemezésében hagyjunk elég időt a vázlaphelyzetek, ábrák rögzítésére is. Az előadás megtartása nem azonos a diatartalmak megjelenítésével, majd felolvasásával, vagyis a felkészüléshez nem éleg csak a diákot elkészíteni, a mondanivalót is meg kell tervezni.

A hagyományos tanulási környezetben sem szűkíthető le az óra való készülés a táblavázlat, ill. az írásos fólia megtervezésére és elkészítésére, a magyarázatot és az illusztratív példákat is végig kell gondolni. Hasznos tanári segítség viszont az öröm menetének ütemezésében, a témavázlat kifejtésében. Korábban ezt papíron készítettük és mindig kéznél volt az órán, most ez a diasorozat révén „publikussá” válhat. Akkor tekinthető jól felkészültnek a tanár az adott témából, ha óráját a PowerPointos prezentáció nélkül is meg tudná tartani. Végül a vázlat a táblára is rögzíthető, a diagramok és vonalas ábrák is felrajzolhatók. Pont az ábrák egyidejű megjelenítése gátolja gyakran a tanapánvaló megértését azáltal, hogy elmarad az elkészítési, szerkesztési folyamat nyomon követethetősége. Ezek megértését elősegíthetik a fázisábrák, de a táblai szerkesztések még így sem helyettesíthetőek. Gyakori hiba, ha a gyakran komoly energiabefektetést igénylő diasorozat elkészítését követően „lespóroljuk” a mondanivaló megértését, mert a megjelenítés és szerkesztése még így sem helyettesíthetőek.

Éppen ezért a diatartalmak tervezése során figyelembe veendő:

- az adott tantárgyi téma vagy tananyag jellege (pl. fogalomgazdagság, készségfejlesztési prioritás, ill. a tananyagtartalom empirikus vagy gyakorlatias volta),
- az adott tantárgyi téma struktúrája (pl. a tananyag strukturálási alapelveinek megértése, logikájának feltárása),
- a domináns didaktikai feladat, osztályviszonylatban a tanulók fejlettségi szintje
- (meglévő tudás, képesség, attitűd),
- a tanulók fejlettségbeli különbözőségeinek korrekciós lehetőségei,
- az alkalmazható tanítás-tanulási stratégiák (pl. induktív, vagy deduktív tananyag-feldolgozás, algoritmiszálás, problémamegoldás) köre,
- a tanulás pedagógiai, pszichológiai, kibernetikai törvényei, törvényszerűségei (ismétlés, hasonlóság, transzfer, pozitív megerősítés, motiváció),
- (SuPlicz, 2007)
- a tanár módszertani eszköztára (pl. rugalmas alkalmazkodás lehetősége az eltérő pedagógiai szituációhoz).

A PowerPointos prezentációkat többnyire az újismeret-feldolgozás, valamint a rendszerezés didaktikai feladatának megoldása során alkalmazzuk. Jelen írás célja ugyan a különböző prezentációs technikák bemutatása, azonban fontosnak tartjuk hangsúlyozni a tanulók fokozott aktivizálására való törekvést már az újismeret-feldolgozás szakaszában is. Az élethosszig tartó tanulás elengedhetetlen előfeltétele az önálló ismeretszerzés és feldolgozás képességei. Ezek fejlesztésére a hagyományos osztálytermi oktatás keretei között kell megtalálni a megfelelő módszereket.

A tanóra előre eltervezett és realizált menete kisebb-nagyobb mértékben eltérhet egymástól. Ennek számos oka lehet, például az osztály tananyag-feldolgozásához szükséges előzetes tudása hiányos, bizonytalan, vagy a tanulók többsége az adott tananyagot nem értette meg annyi idő alatt, ezért még további magyarázatra volt szükség, ill. a tanulók kérdéseket fogalmaztak meg a tananyaggal kapcsolatosan. Mindez természetesen kellő rugalmasságot és előrelátást igényel a pedagógusoktól. Éppen ezért jó, ha van a tarsolyunkban még egy magyarázó ábrát, a mondandó egy másik megközelítésmódját alátámasztó további dia, amelyet szükség esetén kivetíthetünk. A diaszámot illetően megfogalmazható az az általános szabály, hogy egy 45 perces tanóra a fent leírt tartalmi szempontok figyelembevételével 25–30 (±3) diával készüljünk fel. E diákiból az első 1–2 az elmúlt órai tananyag rövid felelevenítését, míg az utolsó 1–2 az adott tanóra összefoglalását, az elmondottak rendszerezését tartalmazza. Ezek a diák segi-
tik a tanulókat kérdéseik megfogalmazásában is. Az egyes diákok szoros logikai kapcsolatban vannak egymással, melyek között az átmenetet a tanári előadás gördülénysége biztosítja. Általában egy dián egy-két gondolat szerepel, illetve az ahhoz kapcsolódó magyarázó ábra, táblázat, felsorolás, animáció stb. Ha egy dián két egymás melletti felsorolás, ábra stb. szerepel, akkor ezzel célunk ezek összehasonlítása, kapcsolatuk feltárása.

A prezentáció során a tanár legyen állandó szemkontaktusban a diákokkal. Gyakori hiba, ha az osztályának háttal állva ujjunkkal mutogatunk a vetítővászn, vagy folyamatosan a számítógép képernyőjét nézünk. A tanulók tekintetének fókuszálásához célszerű mutatópálcát, vagy lézermutatót használni. A távezérlő készülékbe most már nemcsak lézermutatót, hanem a diasorozat léptetését vezérlő nyomógombokat is beépítenek. A diasorozat vezérlésére használhatók a klaviatúra kurzormozgatói billentyűk, ill. a PgUp, PgDn vagy szóköz billentyűk is, viszont ebben az esetben az előadó kénytelen a számítógép mellett állva magyarázni. Nem szerencsés megoldás az egér folyamatos „szorongatása” az óra alatt, körözőgetés a mutatónyíllal, vagy az ezzel való figyelmemoncentrálás, de gyakran körülményes a dialéptetés is. A magyarázat közbeni egérhasználat a görnyedt testtartás miatt sem szerencsés. A tanulói vázlatkészítés megkönnyítése és a tanulói folyamatos fenntartása érdekében nem célszerű a teljes diatartalom egyidejű megjelenítése. Az egyes objektumok (pl. szövegfelsorolások, ábrák) egyedileg is megjeleníthetők, azonban ez gyakori tanári interakciót igényel. Célszerűbb e léptetéseket is inkább a távezérlővel végezni. A tervezéskor gyakori hiba a tulzottan látványos animációk hozzárendelése a megjelenitendő objektumokhoz, például a dobpergésre, vagy fékcsikorgásra karakterenként, véletlenszerű pályákon és irányokból „beúszó” szövegek. Ebben az esetben a látvány elvonja a tanulók figyelmét a tartalmi mondanivalótól.

Főként a lineáris struktúra esetén fordul elő az automatikus diamegjelenítés, időzítés beállítása. Ezt az oktatás során ne használjuk. Elég egy tanulói kérdés, már is kicsúszunk az előre eltervezett időütemből, és több problémánk adódik belőle, mint amilyen haszonnal jár ez a beállítás. Főként munkaközösségi, tantestületi értekezleteken lehet hasznos, hogy ne csússzunk ki a rendelkezésre álló időből.

Fontos szólnunk a diák megjelenítése kapcsán a képernyőtervezés szempontjairól, a színek összhangjáról, az alkalmazható betűtípusokról és méretekről, az ábrák méreteről, stb. E szempontok figyelmen kívül hagyásakor elég kellemetlen.

![Diagram](image)

74.ábra: Vegyes struktúra alapján felépített diasorozat

75.ábra: A háttérszin és az előtér színek helyes és helytelen alkalmazása
pillanataink lehetnek, amikor kivetítjük az otthon hosszadalmas munkával elköszönő diákinkat és a rosszul megválasztott színek miatt gyakorlatilag nem láthatók, nem olvashatók. A dia elkészítésekor nem célszerű együtt alkalmazni a zöldet és a kéket, valamint a sárgát és a pirosat. A fekete háttér fénymessé teszi a fehéret, sárgát, míg fehér háttéren mélyebbeknél tűnik a fekete és a kék. A szürke háttér semlegessége folytán kiemeli a színeket. A háttér és írásszínek együttes alkalmazására mutat jó és rossz példát a 75. ábra.

A színek megválasztását segíti a színtér (76. ábra), amelyben a színjelleg folyamatosan változik. Erről leolvashatjuk a főszínek és a komplementer színek elhelyezkedését, arányát, ill. meghatározzuk ezek egymáshoz való viszonyát. Az alkalmazott színek hatását tekintve minél nagyobb eltérésre kell törekedni. Ezt fejezi ki a színkontraszt. Ilyen kontrasztokat láthatunk a 77. ábrán. A bal oldali ábra szimultán, míg a jobb oldali mennyiségi kontrasztra mutat példát. Az első esetben a tiszta színek a kevert, vagy derített, míg a második esetben a színfelületek méretei állnak egymással ellentétségesek (PAZMÁNY - PERMÁNY, 2005).

Komoly problémát okoz a PowerPoint prezentáció tervezése során, ha a tervezősablonból olyan háttérent választunk, amely világos és sötét tónusátmenettel (tónusellentéte alacsony). Ehhez nehéz megfelelő írásszínt kiválasztani.

A diákon alkalmazott színek megválasztásánál az alábbi szempontokat célszerű figyelembe venni.

- Egy diasorozaton lehetőleg egy sablontípust használjunk, minél kevesebb színátmenettel.
- A színek alkalmazása nem öncélú, ezért egy meghatározott színt mindig ugyanarra a célra használjunk.
- Ha csak lehet, kerüljük négy szinnél több használatát.
- Háttérszínként használjunk kis kontrasztú színeket, pl. szürkét, így könnyű a szöveget kiemelnünk.
- Az élénk színeket (pl. bíbor) használjuk figyelemfelhívásra, kiemelésre.
- Az előtér- és a háttérszín megválasztásánál vegyük figyelembe az ún. flicker (vibráció) effektust, amelyet akkor érzékelünk, ha kék háttérbén vörös, vagy vörös háttérbén kék betükkel írnak.

Ami a diák szöveges tartalmát illeti, feltétlenül kerüljük a mondatszerű kifejtéseket. A hagyományos táblához hasonlóan a PowerPoint prezentáció vázlatkészítésre használjuk. Tartsuk be azt az „ökölszabályt”, hogy egy dián ne legyen több mint 6 szöveges sor és egy sorban pedig maximum 7 szó. A diákon alkalmazandó betűnagyság egészen más, mint a hagyományos szövegszerkesztés során. Itt a 12–14 pontos (1 pt ≈ 0,35 mm) betűnagyság kicsinek számít. Javasoljuk a

Mind a felsorolás, mind pedig a sorszámozás fontos szerepet játszik a diakészítésben. Előbbi inkább a sorrendiséget fejezi ki. Mindkettőnél érhetünk „elkülönítés” technikákkal. Ilyen lehet például a sorközök megőrölése, ill. az eltérő színek használata. Mint azt korábban említettük, ne vigyük túl jobbára a szöveg megjelenítését kísérő animációkat, például kerüljük az alábbiak oktatási célú használatát: stáblista, neutron, bumeráng, szál, fékezés, dobpergés stb.

Fontos szerepet játszik a prezentáció elkészítése során az adatok táblázatos és grafikus megjelenítése. Itt is törekedjünk az egyszerűségre, az áttekinthetőségre. A 78., ill. 79. ábra erre mutat jó (b), ill. rossz (a) példát.

A vonalas ábrák készítésének cél valamely eszköz, berendezés, modell stb. minél vázlatosabb, áttekinthetőbb bemutatása, segítsége a tanári magyarázatot, ennek révén pedig a megértést. A vonalas ábrák egymás utáni sorozata képes folyamatok egyes fázisainak bemutatására. Ebben az esetben két-három ábrát is elhelyezhetünk egy dián. Az ábrák egyes fázisainak egymást követő diákon való elhelyezése, majd lejátszása a mozgás érzékelhetetlenségre is alkalmas. Innen pedig már csak egy lépés az animációk készítése, ill. beillesztése a prezentációba.
A tantárgyi fogalomrendszerek elemeinek kapcsolatát, egymáshoz való viszonyát mutatják be az ún. szervezeti diagramok.

Mind az animációk, mind pedig az ábrák készítésénél élhetünk a lénykiemelés és az elkülönítés eszközeivel: eltérő vonal, karakter és kitöltő színek, valamint vonalfajták és vastagságok alkalmazása. A vonalfajták választásánál korlátozódjunk a folytonos, a szaggatott és a pontvonalra. A többi jellemzőről korábban már részletesen szóltunk.
Az ábrák és képek prezentációba való illesztésénél ügyeljünk a méretekre. Ha az adott dián szöveges információt is szeretnénk közölni, akkor egynél több ábrát, képet semmiképpen se illesszünk be. Animációk használatát akkor javasoljuk, amikor azzal folyamatok időbeliségét, vagy pedig a mondanivaló struktúráját kívánjuk bemutatni.

Szerkesztéseket, levezetéseket nagyon nehéz bemutatni PowerPointos prezentációval. Erre való a tábla.

A mondanivaló dián való elhelyezésekor vegyük figyelembe a tipikus szemmozgást, amely „Z” alakot követ, vagyis bal felső sarok – jobb felső sarok – bal alsó sarok – jobb alsó sarok. Ebből az is következik, hogy a leglényegesebb elemet a bal felső, míg a legkevésbé fontosat a jobb alsó sarokban helyezzük el.

A diaszámozás használata szintén elősegíti a prezentáció időbeli ütemezését. Ha alkalmazása mellett döntünk, akkor célzottan megadni: aktuális dia/összes dia.

Végezetül néhány további lehetőségre hívjuk fel a figyelmet:

- Az internetről számos ingyenes hozzáférésű diasablon töltethető le (keresési mód: PowerPoint Templates).
- Az interneten számos olyan fórum is működik, ahová bejelentkezve hasznos információkhoz juthatunk a PowerPointos prezentációk készítését és alkalmazását illetően (keresés: PowerPoint fórum).
- Ha az elkészült prezentációkat szeretnénk a tanulók számára is elérhetővé tenni, akkor egyrésztt megoszthatjuk azt (pl. www.slideshare.net), másrészt tantárgyunkhoz szervezhetünk virtuális kurzust (pl. Moodle virtuális keretrendszer által), amelyből anyagunk letölthetővé válik.
E fejezetben azokat a kommunikációtechnikai, pedagógiai, képernyőtervezési szempontokat tekintettük át, amelyeket a PowerPointos prezentációk tervezése során fontosnak tartunk figyelembe venni. A prezentáció összeállítása, a technikai eszközök (hordozható számítógép, projektor) kezelése és az előadás megtartása ma már fontos részét képezik a tanári kompetenciának. Ne feledkezzünk meg arról, hogy a korszerű technika megléte önmagában még nem biztosítéka a kiváló tanórának, az új oktatástechnikai eszközök mellett elsősorban felkészült, azokat kreatív módon alkalmazni tudó pedagógusokra van szükség.

3.2.4.2 Interaktív tábla

A korszerű tudás alapú társadalomban általános társadalmi elvárás, hogy az iskolák is igazodjanak a kor követelményeihez, alkalmazzák azokat a modern informatikai eszközöket, amelyek hatékonyan segíthetik a tanítás/tanulás folyamatát. A Nemzeti Fejlesztési Terv 21. századi Iskola programja segít abban, hogy a hazai oktatási intézmények felzárkózzanak az elvárásokhoz. A program egyik eredményeképp egy új, rendkívül sokoldalú oktatási eszközzel szerelik fel az osztályterek felét: az interaktív táblákkal.

Az eszközök megléte a sikerehöz – a hatékonyabb iskolához – vezető út egyik fontos feltétele. Azonban hasonlóan, ha nem még inkább fontos kérdés, hogy a pedagógusok felkészültek-e egy ilyen újdonság kezelésére, tisztában vannak-e a célokkal, ismerik-e és képesek-e alkalmazni azokat a módszereket, amelyek valóban érvényre juttatják az interaktív táblák hozzáadott pedagógiai értékét? Jelen írás ezen kérdéshez kapcsolódó gondolatokat, a sikerhez vezető út mérföldköveit szedi csokorba, és remélem, kedvcsinálóként is szolgál az interaktív táblák megismeréséhez, használatához.

Befogadó környezet

Azokban az országokban, ahol már széles körben használják ezeket az oktatástechnológiai eszközöket, részletes elemzésekben foglalták össze, milyen előnyei vannak az interaktív tábláknak, és milyen hatással vannak a tanulás/tanítási folyamatra. Mindezen eredményeket azonban csak a hazai oktatási rendszer szokása- inak, igényeinek és hibáinak figyelembe vételével szabad elemezni és elfogadni. Így alkothatunk reális képet arról, mifőg történni a hazai oktatási rendszeren belül 2008 őszén, 2009 tavaszán, amikor az eszközök nagy számban megjelennek az intézményekben. Mik tehát a legfontosabb különbségek a befogadó környezet tekintetében?

(1) Iskolarendszer felszereltsége. A legtöbb pozitív nemzetközi példában „gazdagabb”, jobban felszerelt iskolákba kerültek az eszközök, ahol nem kezelték megkülönböztetett figyelemmel az interaktív táblákat, pusztán úgy ahogy
A 21. SZÁZAD ISKOLÁJA

PEDAGÓGIA

a többi oktatástechnikai vagy taneszközt. (2) Módszertani kultúra különbségei. A hazai, a frontális módszert túlsúlyozó oktatási környezetben hiányoznak azok a pedagógiai módszerek (kooperatív tanulás, csoportmunka, projektmunka) amelyek ténylegesen képesek kihasználni az eszközben rejlő lehetőségeket. (3) Tanárok IKT kompetenciájának fejletlensége. Bár jelentős előrelépésp történt az iskolai számítógép használat terén az elmúlt pár évben, mutatóink így is elmaradnak a fejlett országok tanárai körében tapasztalható értéktől. Legnagyobb probléma, hogy ha pedagógusaink rendelkeznek is felhasználói szintű informatikai ismeretekkel, nem használják a számítógépeiket a tanórákon. (4) A tanulók IKT kompetenciájának fejlesztésében rejlő különbségek. Több országban az informatikai ismeretek átadása, az IKT kompetencia, a digitális irántudás fejlesztése olyan általános fejlesztési cél, mely nem egy külön tantárgyként (nálunk informatika) jelenik meg, hanem általánosan fejlesztendő kompetencia-területként. Mindez nem csak azt jelenti, hogy szinte minden pedagógus alkal-mazza a számítógépeket a tanórákon, de az eszközök sem informatikai laborok mélyére vannak rejtte, hanem néhány számítógép a tantermek szerves részét képezi, melyet aztán csoportmunkában, vagy differenciált egyéni munkában használnak a tanulók a tanórák jelentős százalékában.

Nem csak a befogadó környezet különbözik a viszonyítási alapként szolgáló nemzetközi példákhoz képest, hanem az eszközök terjedésének módja is. A leg-több országban ugyanis spontán fejlődés ment végbe, azaz az oktatási rendszer intézményei saját igényeik alapján önszántukból vásárolták meg az eszközöket. Nálunk tudatos fejlesztéssel, központi programként, rövid időn belül jutnak interaktív táblákon az intézmények. A program hatására a lemaradásunk gyorsan mérsékelhető, am figyelembe kell venni, hogy lényegesen lerövidült a pedagógusok felkészülésére, attitűdjük formálására szánható idő.

A fent vázolt körülmények függvényében elengedhetetlen, hogy az eszközök használatba vétele, a felkészülés tudatos tervezés alapján történjen, mind oktatási rendszer, mind intézmény, mind személyi szinten. Ellenkező esetben könnyen kellemetlen kudarc lehet a bevezetési folyamat vége.

Nincs királyi út

Az interaktív táblák bevezetésétől várt három legfontosabb oktatáspolitikai cél között találjuk: (1) Módszertani kultúra megújulásának katalizálását (2) Hátrányos helyzetű iskolák térsége lemaradásának mérséklését (3) IKT kultúra „szabaduljon ki” az informatikai laborok fogságából.

Hogy ezen célokat eléhessük, le kell győzni a pedagógusok nagy részében az informatikai eszközök használatával kapcsolatosan fellépő szorongást. Intézményen belül el kell érni, hogy az eszköz használata egyszerűvé és mindennapossá váljék, biztosítani kell, hogy a tanári kollektiva egymás munkáját is segítve.
közösen illessze be az interaktív táblák használatát mindennapos rutinjai közé. A bevezetéseket vízsgáló elemzések feltárták az interaktív tábla használatának több fázisát. Első megközelítésben a tanárok a táblát egyszerű vetítő felületként használják. Megszokott prezentációs szoftverekkel elsősorban a szemléltetés válik a tábla fő funkciójává. Ha ezen a szinten megreked a táblahasználat, akkor az interaktív táblák nem fogják beteljesíteni a módszertani megújulás katalizátórának szerepét, hiszen a frontális oktatás gyakorlatát erősí tik meg. Ezt követően általában egy technikai lehetőségeket bemutató képzés hatására a pedagógusok elkezdik használni a tábla interaktív funkcióit. Az interaktivitás kezdetben még a szemléltetést, később az elemekkel történő manipulálást, közös tudáskolatot szolgálják. A pedagógusok ezen a ponton lelkesek, mert érzékelik az eszköz pozitív hatását a gyermekek motívációjára. Általában a lelkesedés túlzott alkalmazáshoz vezet, amit látványos, ám valós pedagógiai cél nélküli tananyagelemekkel teletüzelt óra jellemze. Mindezeket követően alakul ki az a végső megközelítés, ahol a pedagógusok figyelme az alkalmazott módszerek felé irányul, a tervezés világos oktatási vagy nevelési célok mentén tudatossá válik. Itt nyílik lehetőség összetet, esetleg az adott személy vagy intézmény életében eddig ismeretlen pedagógiai módszerek kipróbálására és hatékony alkalmazására.

A tábla használatának elsajátítása egy tanulási folyamat, amelyen minden alkalmas végighalad, a maga egyéni tempójában.

Mit várhatunk az interaktív táblák használatától?

Még érdekesebb válaszokat kapunk, ha a szaktárgyi alkalmazás pozitív hatása-ira kérdezünk rá. Matematika esetében a legfontosabb pozitívum az absztrakt fo-galmak láthatóvá, manipulálhatóvá tétele, a történelem témakörben a forrásfeldol-gožás terén adhat többet az interaktív tábla az eddig megismert módszerekknél. A természettudományok esetében az összetett folyamatokat bemutató interaktív animációk vagy virtuális kísérletek, szimulációk, irodalom esetében a közös szövegfeldolgozás új lehetőségei, és a művészi alkotások különböző interpretációi gyors megjelenítésének lehetőségei jelentik a legkiemelkedőbb vonzerőt.

Gyakorlati tanácsok intézményvezetők részére

Készüljön fel és készítsze fel a nevelőtestület kisebb csoportját az aktivtáblák fog-gadására! A legjobb módja ennek, ha meglátogat néhány bemutatót vagy beirat-kozik valamelyik akkreditált tanfolyamra, ahol gyakorlati oldaláról ismerheti meg az új eszközöt. Több típus, tucatnyi gyártó létezik. Térképezze fel, intézményének mire van szüksége!

Drága eszközről van szó. Az anyagi befektetés csak akkor térül meg, ha minden nap, minél több tanórán használják. Az interaktív táblának az osztályteremben a helye! Ne helyezze el különtérembbe, ahova csak nehézségek árán jutnak be az osztályok, és nem javasolt, hogy az interaktív tábla az informatikai laborba kerül jön. Abban a teremben ahol az interaktív táblát használják (egyelőre!) elegendő az az egyetlen számítógép, amihez az interaktív tábla csatlakozik.

Valószínű, hogy első körben intézménye mindössze néhány, kettő-három, inte-raktív táblát kap majd. Ha jól gazdálkodik a lehetőséggel, nagyon sokat segíthet a pedagógus kollégáknak. A hazai és nemzetközi tapasztalatok mind azt mutatják, hogy fel kell vállalni a nehéz döntést, és ki kell választani a nevelőtestület egy olyan kisebb csoportját, akik szorosan együtt dolgoznak, és vállalják, hogy leg-alább egy tanéven át minden nap használják az aktivtáblákat, és tapasztalataikat egymással megosztják, egymást segítek. Kerüljön tehát a néhány eszköz például a párhuzamos harmadik osztályokba, vagy a történelem tantermekbe! A lényeg, hogy az eszközöket használó kollégák egymástól is tanulhassanak majd, legyen lehetőségük arra, hogy megosszák a feladatokat, általuk készített tananyagokat, vagy tapasztalataikat. Bár a döntés kedvezőtlen azok számára, akikre így nem „első körben” kerül sor, a szoros együttműködés lehetőségéből származó előnyök megérlik a kellemetlenséget, és a következő évben sor kerülhet cserére, illetve új táblák beszerzésére.

A hordozható megoldások kényelmetlenek, és az eszközök idő előtti meghibá-sodasához vezetnek. Az interaktív táblát, hozzá tartozó projektort és számítógé-peket fixen szereltesse a falra. Így lényegesen egyszerűbb a mindennapi használat és lényegesen kisebb a meghibásodás lehetősége. Gondoljon a terem praktikus
sötétítésére is, amelyre a projektor használatához szükség lesz. Egy modern, legalább 1500 ANSI lumen fényerejű projektor használata mellett nincs szükség teljes sötétítésre, marad elég fény a jegyzeteléshez, valamint a szemkontaktus és a rend fenntartásához.

Minden eddigi vizsgálat – legyen az hazai vagy külföldi – külön kiemeli a képzés fontosságát! Fordítson különleges figyelmet arra, hogy a nevelőtestületének minden tagja lehetőséget kapjon, hogy ismereteinek és meglévő gyakorlatának megfelelő kurzusra iratkozzon be. A kurzusoknak a technikai ismeretek átadásán túl az oktatási módszerek bemutatására, a felhasználható oktatási tartalmak, tananyagok ismertetésére is ki kell terjednie.

Interaktív táblát! De milyet?

A kérdés távolinak és mellékesnek tűnhet, de nem az! A magyarországi oktatástechnológiai palettán tucatszám találhatók eszközök, amit mind-mind interaktív táblának hívnak, holott olykor nem is hasonlítanak egymásra. Interaktív táblából több fajta is van. Fontos, hogy eligazodjunk közüktől, hogy megtaláljuk a céljainknak megfelelőt, különben a drágán beszerzett taneszköz nem simul majd bele a mindennapok gyakorlatába. Sokan egy-egy termékbemutató élménye alapján vagyunk kénytelenek képet alkotni az aktivtábláról. A kép azonban hamis! Minden kereskedő – tegyük hozzá személyes nézőpontjából érthetően – saját termékeinek előnyeit hangsúlyozza, és csak ritkán vallja be, vannak más, eltérő elven működő eszközök is. Válasszuk ki az igényeinknek leginkább megfelelő típust! Nézzük tehát, hogy milyen típusú eszközök léteznek, és ezek hogyan használhatók?

Mobil táblák – sok szerelést igényelnek

A legfontosabb kérdés egy-egy típusnál, hogy valódi interaktív tábláról beszélünk, vagy csak egy fehér táblára rögzíthető érzékelőről. Ez utóbbi eszközöket gyakran hívják virtuális, vagy mobil tábláknak. Előnyük a hordozhatóság és első közelítésben olcsóbbak is, mint a valódi interaktív táblák. Ha azonban a képletbe beleszámoljuk a használathoz szükséges zománctáblát is, az ár már nem is olyan kedvező. A mindennapi használatban pedig az állandó összeszerelés-szétszedés, telepítés-összepakolás annyi veszösséggel jár, hogy nem csoda, ha a virtuális táblánk hamar a fiók mélyére kerül, és csak különleges alkalmakkor kerül elő. Így azonban sosem ismerjük meg az aktivtáblák minden napi használatának előnyeit. A mobil eszközöket tehát hagyjuk meg a világutazó kollégáknak, akik nem sajnálják a drága idejüket az oktatástechnikai eszközök összeszerelésére fordítani.
Interaktív tábla

Használata épp olyan egyszerű, mint egy számítógépnek a mindennapokban. A valódi interaktív tábla egy hatalmas vetítő felület, amely érzékelőket rejt magában. Segítségével az osztály előtt, a tábla mellől vezérelhetjük a hozzá kapcsolódó számítógépet, kihasználva annak minden előnyét. A számítógép képe a projektor segítségével a táblára vetül, az pedig érzékelni képes, hol érintettük meg a felületet, azaz hol „kattintottunk”. A táblát és a projektort szereltessek fixen a tanterembe, és a használatához a bekapcsoláson kívül semmi mást nem kell tennünk. Így minden órán a segítségünkre lesz!

A kemény tábla előnyei

Tábla és szoftver

Az aktivtáblák mindennapi használatát nem csak a fizikai adottságok határozzák meg. Minden interaktív táblához mellékelnek egy-egy ún. tábla szoftvert, aminek segítségével saját interaktív tanórákat állíthatunk össze. A táblaszoftverek használhatósága jelentősen különbözhet az egyes típusoknál. Van olyan gyártó, aki már évek óta fejleszti termékeit, gyakorló iskoláknak és más kísérleti helyzetekben gyűjött tapasztalatokat alapján tökéletesítve azt. Mások sajnos nem fordítanak ekkora figyelmet termékük ezen fontos elemére. Tájékozódjunk a gyártók honlapjáról, illetve az iskolák tanácsadó szervezeteinél, internetes fórumokban. Nem csak a szoftver funkcióiban lehetnek különbségek, de a táblaszoftverrel együtt általában egy mediagyűjteményt is kapunk, amely az oktatáshoz felhasználható képeket, háttérképeket, animációkat, esetenként kompletten tanóra terveket is
81. ábra: Példák interaktív tábla használatára
tartalmaz. Természetesen a képtárakat mi is bővíthetjük a használat során, de a folyamatosan frissíthető gyűjtemény nagy segítségünkre van a mindennapi munka során. A jól megválasztott aktivitábla legfontosabb tulajdonsága, hogy „fel sem tűnik”. Olyan természetességgel használjuk majd az iskolában, ahogyan a hangyományos táblát vagy a fali térképet. Ugyanakkor érezni fogjuk, hogy az interaktív tábla új lehetőséget teremt a tanulókat motiváló, tanulói aktivitásra építő pedagógiai módszerek alkalmazásában, amit elsősorban maguk a tanulók fognak értékelni, mi több elismerni. Érdemes tehát kipróbálni, mert bár hazánkban újdonságról van szó, a föld számos országában már elfogadott és a tantermek alapfelszerelését jelentő eszközzel beszélhetünk, nem véletlenül.

Az interaktív tábla használata rendkívül egyszerű. Sokkal előbb megtanulható, mint egy új mobiltelefon működtetése, tehát bárki könnyedén elboldogul vele. Alkalmazásuk nagyban segítheti a hatékony pedagógiai módszerek terjedését, az iskola hatékonyságának növelését, azonban a siker leginkább az eszközölt alkalmazó pedagógusok munkáján múlik. A legfontosabb cél tehát a mindennapi munkát végző pedagógus segítése, motiválása kell, legyen.

3.2.4.3 Esettanulmány feldolgozása interaktív tábla használattal

Az esettanulmányok módszerével való oktatás a pedagógia egyik legnagyobb kihívása. A tanulók nagyfokú lelkesedést és intuíciót visznek bele a beszélgetésekbe, és az esettanulmányokkal oktató tanár a felfedezés élménye által segíti elő a tanulást. Ez az oktatási módszer sokkal többet követel, mint az „előadásos” oktatás, de kimagasló az eredménye is. Az esettanulmányokra alapozott módszer vitára szólít olyan valós élethelyzetekkel kapcsolatban, melyekkel tapasztalt szakemberek már nem egyszer találkoztak. Az esettanulmányok a tanulók számára a döntési folyamatokban, a problémanegoldási helyzetekben mintaként szolgálhatnak, megkönnyítve ezzel az elméleti ismeretek elsajátítását és a későbbiekben segítve a mindennapi munkát.

Az esettanulmány valós eseményeken alapul, tanulmányozása pedagógia célokat szolgál. Az esettanulmányok alkalmazásával az életünk valós elemei kerülnek be a tantermi környezetbe, a tanulók a tanár irányításával valódi problémák megoldásán dolgozhatnak. Az esettanulmányokon alapuló oktatás a hagyományos tanítási módszerektől eltérően aktív órai részvételt és gyakorlati tapasztalatok megszerzését foglalja magába. Az esetek elemzése, megvitatása kiváltja az olyan módszereket, mint például az előadással összekapcsolt magyarázat vagy tanári bemutatás. Az adott eset vagy esemény válik a megbeszélés, vita, eszmecsere, tudás- és tapasztalatgyarapítás eszközővé. Az esettanulmányok tartalmazzák az
A 21. SZÁZAD ISKOLÁJA

esetek leírását és a megbeszélendő kérdéseket. (Az egyes esetekhez kapcsolódó tanári útmutatások a további segédanyagok közé sorolandók.) Megfelelő meta-információk kiemelésével különböző tanulási helyzetekhez és feladatokhoz hasonló esetek azonosíthatók és tárhatók fel.

Írásunkban az esettanulmányok négy általános típusát mutatjuk be. Az egyik típust az értékelésre váró esettanulmányok csoportjába sorolhatjuk (alanya - csoport, esemény, szituáció, szervezet stb.). Az ilyen információra összpondító esetek három fajtáját különböztetjük meg: különleges, a tipikustól eltérő esetek, kritikus esetek, paradigmatisz (szemléletváltást segítő) esetek. Ez a típus azt írja le, hogy egy adott esetben mit tett(ek) a szakember(ek) és az osztálytermi beszélgetés legfőbb célja annak értékelése, hogy az eljárás helyes volt-e. Interaktív tábla használatával az értékelési folyamatot és annak információit, a döntési folyamatok strukturált és szemléletes formában kerülnek bemutatásra. Az információs-kommunikációs hálózatok fejlődése folytán a tanulás folyamatában nem oktatási céllal készült friss szakanyagok, szakmai fórumok résztvevői véleménye, az iskola szociális környezetének szaktudása (szülők, gyakorlati oktatók, szakmai partnerek, együttműködő iskolák) tapasztalata is bekapcsolható az órák menetébe. Az esettanulmányok második típusa általánosan problémamegoldó/döntéscsoportos esettanulmányként ismert; azaz, a résztvevők szembesülnek egy meghatalmazott problémával és a helyzetgyakorlat felszólítja őket, hogy vegyék számba a lehetséges válaszlépéseket, továbbá azt, hogy milyen döntést hoznának és hogy milyen akciótervet állítanának össze. A célirányos tanulás motiválja a tanulókat, lehetőséget adva arra, hogy a tanulók a saját tevékenységük és az általuk elkövetett hibák, és az azokra kapott visszacsatolások alapján fejlesszék tudásukat. A tanulók számára – interaktív tábla használatával – a WEB nyújtotta támgatási eszközök (hasonló esetek keresése, információgyűjtés és feldolgozás, szakemberekkel történő kapcsolat-felvétel, tanácskérés stb.) nagy mennyiségű, adekvát információ helyes kezelésére, feldolgozására és értékelésére készíti fel a tanulókat. A tanulás ezen stratégiájának – egy számítógépes hálózat alapú együttműködésre épülő oktatási környezetben – való használata a résztvevők közötti direkt, szemtől szemben történő kommunikációit sem teszi feltétlenül szükségsessé; azaz kiterjeszthető együttműködő iskolák közös programjaként is az esetfelfogózás. Végezetül az esettanulmányoknak van egy általános felmérésre vonatkozó tipusa, melyben megadjuk a szükséges információkat, de azok csak ömleszve állnak rendelkezésre, ezért a résztvevők dolga, hogy meghatározzák: hogyan is kell azokat értékelni, vannak-e olyan nehézségek, melyek azonnal intézkedést követelnek, és ha igen: milyen lépéseket kell tenni a megoldás érdekében. Ez a feladattípus a problémát komplex összefüggéseihez jeleníti meg. A problémát ismeretgazdag kontextusban helyezi el, hogy a tanulók tudományos igényű vizsgálódásokat folytathassanak. Ugyanakkor szükséges, hogy a tanulókat lás
suk el olyan eszközökkel, amelyek képessé teszi őket, hogy ezeket az összetett problémákat kezeljék. Biztosítsunk számukra információit multimédia formában is az interaktiv tábla használatával. Szemléletes és sokoldalú bemutatással exponáljuk számukra a problémát a különböző tanulási stílusú tanulók információfeldolgozásához igazodva. Továbbá sokoldalú szakmai szakértői támogatást kell biztosítani, hogy a megfelelő tudássajátítást, illetve tudástransfert elősegítsük. Fontos, hogy hangsúlyozzuk a tudássanyagok egymással való összefüggésének kiemelését. Az összehasonlító esettanulmányok esetében nem a különböző eseményekből, szervezetekből történő mintavétel (mert általánosítani szeretnénk megállapításait hasonló esetekre) a célunk, hanem a cél fordított, vagyis, hogy szisztematikusan összehasonlitsuk például a vizsgált szervezeteket, döntési alternatívákat, elemezzük az egyes kérdésekehez való hozzáállás eltéréseit.

Az esettanulmányokra alapozott módszer először arra szólítja fel a résztvevőket, hogy olvassanak el és gondoljanak végig minden egyes esettanulmányt. A résztvevőknek meg kell fogalmazniuk a problémákat, meg kell határoznunk az alternatívákat, elemezniük kell az adatokat, döntést kell hozni és akciótervet kell felvárolni. (A problémamegoldás folyamatát, lépéseit, alternatíváit és azok értékelését, majd eredményét személyesen jeleníthetjük meg az interaktiv táblán.) Ahhoz, hogy ezt jól sajátítsa el valaki, bele kell élnie magát egy-egy valós élethelyzetbe, szerepbe. Minden egyes esettanulmány esetében az önálló álláspont kialakítását hasonló esetekre alkalmaznánk. Ha valaki fejben tisztán kialakit magának egy álláspontot, személyesen is részt fog venni a beszélgetésekben és rendkívül érdeklődő lesz. Az esettanulmányos tanulás így az elmélyült tanulás lehetőségét nyújtja. Az esettanulmányok első lépésben kötötten kiscsoportos megbeszélések formájában kerülnek megvalósításra; (ezeket a kiscsoportokat tanuló-, vagy vitázó csoportoknak nevezzük), de később már szabályosan ütemezett osztálytermi foglalkozások formájában beszélünk meg őket, melynek során minden résztvevő nézetet, véleményét és értékelést alaposan megvizsgálják. E megbeszéléseknek az a legfőbb célja, hogy az esettanulmányban felvetett helyzet minden aspektusát feltárja: a tényeket, a feltételeket, az alternatívákat, a végső lépést. Nem kétséges, hogy ezeket a megbeszéléseket Ön is rendkívül igazolnának fogja találni, és észre fogja venni, hogy a témák, tárgykörök, nézetek, stb. milyen széles skáláját ölelik fel. A megbeszélések közben a tanár célja első lépésében az, hogy összegyűjtse és az interaktív táblán rögzítse az egyéni és csoportvéleményeket, később pedig az, hogy segítsé összegezni a vitát, megbeszélést meghatározó nézeteket. Az interaktív táblán szemléletes formában követethetővé válannak az eset megoldási folyamatok, a személyes telje-
sítmények és csoportmunka eredmények. A megoldási alternatívák sokoldalú bemutatása, az eredményes megoldásra vezető stratégiák részletes kifejtése, a különböző tanulási stílusú és képességű tanulók számára egyaránt nagy segítséget nyújt az esetek tanulmányozásához. A problémamegoldó algoritmusok vagy intuitív megoldások kidolgozását a vitázó csoportok maguk jeleníthetik meg az interaktív táblán. Hasonló eseteket kereshetnek és tanulmányozhatnak az interneten, állításaikat és indoklásaikat naprakész információk keresésével támaszthatják alá. Eredményeiket meg is oszthatják másokkal, illetve online segítség kéresével szakértők bevonására is mód nyílik az esetmegoldó folyamatba. A tanár szerepe így nem abban jelölhető meg, hogy szakmai szakértőként megmondja: melyik álláspont helyes, vagy melyik nem. A tanárnak biztosítania kell, hogy az osztályból mindenki, oktató és résztvevő egyaránt közös élményekre tegyen szert, melynek alapján a problémamegoldással kapcsolatos általánosítások és összhang kialakítására nyilik lehetőség. Egy ilyen oktatási módszer közben és után a „mit tanultam” felmérése azért nehéz, mert a hangsúly a szakmai jártasság fejlesztésén, a koncepcionális kérdéseken és a hozzáálláson van és csak másodszorban a tudáson.

Az esettanulmányok útján való oktatás az egyik legtöbbet követelő pedagógiai módszer mind a tanulók, mind tanáraik számára. Az esettanulmány előkészítése jelentős idő- és szellemi ráfordítást igényel. A diákoknak nemcsak az esetben foglalt tényeket kell megismerniük, hanem fel kell ismerniük a kulcsfontosságú problémákat, az ezek elemzéséhez szükséges információkat, és meg kell találniuk a feldolgozáshoz vezető saját utat. Amennyiben az aktív részvétel nagy súlylyal számít bele az osztályzatba, a résztvevők további időt fordíthatnak a stratégia kidolgozására, melynek segítségével biztosíthatják érdemi közreműködésüket a foglalkozások alatt.

Az előzetes felkészülés csak egy csekély része az esettanulmányos oktatási módszerek. Az esettanulmány-feldolgozási órán mind a hallgatók, mind az oktatók aktívan részt vesznek a tanulási folyamatban. A hagyományos tanár-diák serepek – azok hierarchikus vonatkozásaival együtt – mellőzve vannak. A tanuláshoz alkalmas környezet biztosításáért a résztvevők felelősek; ez azt jelenti, hogy a tanárnak fel kell készülnie arra, hogy átadja kezéből az esetmegoldás irányítását, miközben továbbra is képes kell, hogy legyen megőrizni a tanuláshoz alkalmas kereteket. Az ilyen osztálytermi foglalkozás rengeteg energiát igényel; egyszerre kell figyelni a folyamatra (a témá megbeszélését alkotó tevékenységek egymás utániságára), valamint a tartalomra (a tárgyalta anyagra), ami egyszerre jelent emocionális és intellektuális lekötöttséget. Ehhez jelent nagy segítséget az interaktív tábla, amely a foglalkozások tartalmának előkészítésével, szemléltetésével, az eredmények rögzítésével „felszabadítja a tanári erőforrásokat” a tanulókkal való

3.2.5 Webes közösség

3.2.5.1 Web 1 – Web 2

2005-ben egy olyan fogalom jelent meg az internettel kapcsolatos szakirodalomban, amely egy új kultúra pedagógus művelőiben tudatosította: jelentős nemzetközi mozgalom részei, amely alapvetően megváltoztat mindent, amit eddig gondoltunk az internetről, s azt is, ahogyan viselkedtünk ebben az egyre táguló virtuális térben. Stephen Downes cikke az E-learning 2 címet viselte, és az internetes fájlcseré közösségi produktumait: a képek, szövegek, hangok szabad megosztását, a közösségi vitafórumok született új ismereteket, a „mindenki lexikonját”, a szabadon szerkeszthető, bármely témában újraindítható wikipédia nyílvánított. Ahogyan egy szoftver egyre tökéletesebbek vált, bonyolultabb változatait szokás sorozatszámakkal jelölni, úgy adták az elméletirók a közösségi internetes alkalmazásokat integráló, az egyéni tanulást a formális oktatással ötvöző „második generációs” e-learning produktumoknak és módszereknnek az E-learning 2 gyűjtőnevet. A Web 2.0 elnevezés is hasonló tartalommal bír. Míg a világháló első megjelenésekor szoktak technokraták segítségével kezdtek ismerkedni új kommunikációs és kereskedelmi szolgáltatásokkal, (ez volt a Web 1.0 vagy a „kattintós” Web korszaka), addig a „második generációs” internetes alkalmazások ihletője és életben tartója maga az internetes közösség. A 21. század elejére vált bizonyossá, hogy a világháló informatikai kuriózumból termelőeszközzé nőheti ki magát. A fejlődést prognosztizáló egyik legutóbbi magyar tanulmány szerzőcsoportja a Web 1.0-t a lehetőség, a Web 2.0-t az együttműködés, míg a Web 3.0-t a megbízhatóság kultúrájának nevezte el. (IT3, 2007) Egy másféle definíció szerint: Web 1.0 „egyirányú”, Web 2.0 „kétirányú” kommunikációt tesz lehetővé, míg a Web 3.0 „intelligenciát” is tartalmaz.
Az első és második generációs internetkultúrát alábbi táblázatunkban hasonlíthatjuk össze.

<table>
<thead>
<tr>
<th>Web 1.0</th>
<th>Web 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britannica Online</td>
<td>Wikipedia, a közösségi enciklopédia</td>
</tr>
<tr>
<td>saját weboldalak</td>
<td>blog (digitális napló, vő. 3.2.4.1. rész)</td>
</tr>
<tr>
<td>névre keresés</td>
<td>keresés-optimalizálás intelligens, afelhasználószokásait elemző keresőprogramokkal</td>
</tr>
<tr>
<td>webes információ másolása</td>
<td>– ez az alkalmazás már a Web 2.0, az „intelligens” hálózat felé mutat</td>
</tr>
<tr>
<td>kész művek publikálása</td>
<td>web szolgáltatások</td>
</tr>
<tr>
<td>zárt, csak a megbízott személyek által szerkeszthető tartalom</td>
<td>részvétel a tartalom megalkotásában</td>
</tr>
<tr>
<td>előre megadott, a dokumentumot jellemző szavakkal leíró címek rendszere (taxonómia)</td>
<td>wiki alapú közösségi tartalom-megosztó rendszerek</td>
</tr>
<tr>
<td>oldallátogatás</td>
<td>közösségi címkézés („folkszonómia”), ahol a leíró szavak tárát is bővítheti bárho</td>
</tr>
<tr>
<td>fejlesztési szakaszok</td>
<td>szindikáció (előjegyzés meghatározott tartalmakra)</td>
</tr>
<tr>
<td>minden jog fenntartva</td>
<td>folyamatos fejlesztés („béta működés”)</td>
</tr>
<tr>
<td>a fejlesztők teremtik az értéket a hálózaton</td>
<td>lényeges szerzői jogok megosztva</td>
</tr>
<tr>
<td>egy szűk szerkesztőbizottság szűri ki a nem odaolvá tartalmazat.</td>
<td>a felhasználók teremtik az értéket a hálózaton</td>
</tr>
<tr>
<td></td>
<td>maga a felhasználói közösség szűri ki a nem odaolvá tartalmazat</td>
</tr>
</tbody>
</table>

4. táblázat: A régi és az új internetet közötti legfontosabb különbségek (O’REILLY, 2005 nyomán)

Korszakunk átmenetinek tekinthető, hiszen együtt élünk a közelmúlt: a Web 1.0 és a jelenben már érzékelhető, közeli jövő: a Web 2.0 kultúrájával. Aki oktatási célra keres tananyagot, gyakran tapasztalja, hogy a témaik hasonlóak bár, de az elkészült termékek nem egységesek. Az oktatási informatika produktumait elsősorban a szerző sajátos igényei határozzák meg, még kevesen törödnek az újrafelhasználhatósággal. (Ezzel a problémával küzdnek egyébként a kötetünkben bemutatott Európai Digitális Tananyag Portál, az LRE fejlesztői.) Sok különböző formátum van használatban, és ezek integrálása, egységes módon való megjelenítése nehézkes. A tartalomelérésnél még mindig gyakori az útvonal közvetlen
megadása (ezért nevezik „kattintós”-nak a Web 1.0-t), bár a kereső portálak használata egyre gyakoribb. A keresőszavainkra érkező találatok csoportosításából a használati gyakoriság szempontján túl (az adott oldal népszerűsége jelezheti ennek minőségét), még hiányzik a tartalmak különböző kontextusokban megnyilvánuló jelentéseinek, azaz a szemantikai szempontoknak a figyelembe vétele. (Ezt a fontos szempontot is tartalmazza az LRE.) A tartalom-hozzáférés dijánál fix előfizetési modell és nem a tényleges használat mértékében történő dijszámítás a jellemző. A tartalmak publikálásánál a nagy cégek népszerű weboldalai a meghatározóak, ezek szerkesztői döntik el, mihez férhetünk hozzá. Bizonyos gyakran használt referencia művekhez hozzájuthatunk már az interneten (pl. Britannica Online), de a digitalizálás még nem eléggé tervszerű. Hazánkban az egyéni felhasználók és kisebb szervezetek tartalmi hozzájárulása az internet tartalmához még nem jelentős, habár már megindult nálunk is a közösségi tartalomszolgáltatás. A hálózat használt szoftvereket különböző operációs rendszer-platformokra írják, a szoftverek platform-függőtlen anyag tételése, és az ilyen szoftverek használata még ritka jelenség (Kraith és Kömlödi, é.n.).

A Web 2.0 a kompetens internetezők kultúrája. Diákjaink ebben a virtuális universzumban nőnek fel, ennek az eszközeit használják naponta, innen szerzik ismereteiket. Mindez azért lehetséges, mert immár tömegek rendelkeznek az ehhez szükséges informatikai kompetenciával és technikai lehetőségekkel. A Web 2.0 egyik legfontosabb jellemzője az, amiről egyik előző fejezetünkben (3.2.4.1) a személyes tanulási terekkel (PLE) kapcsolatban is volt szó: a közlés iránya megváltozott. Amíg korábban az egyén és a világháló kommunikációjában az olvasás (mások által írt szövegek, megismerése), illetve a képek, hangok befogadása volt a jellemző, most egyre nagyobb részarányt tesz ki az írás, illetve a képek, hangzó anyagok létrehozása.

Ez az elmozdulás a tömegkommunikációban is megfigyelhető. Fokozatosan teret nyer az interaktív rádiózás és televíziózás. A néző beleszól az adásba, elmondja véleményét, meghatározza, milyen műsorszám következze, sőt, igen gyakran bemutathatja produkcióját is – például az igen népszerű home video-t, egy családi, amatőrfilmes produkció. A baráti és szakmai kapcsolatok építése, az ezekeket támogató – angol elnevezéssel: social networking – informatikai környezet (például hazánkban a rendkívül népszerű bemutatkozó és barátbejelölő oldalak, mint az iwiw vagy a Plaxo) szintén Web 2.0 technológiájának számítanak. Ezek a virtuális találkozóhelyek éppúgy felhasználhatók oktatási célra, mint az alább bemutatandó tartalommegosztó lehetőségek. A tanulás csoportos formái között kimerülten alkalmas a kooperatív tanulás (Kagan, 2004) és egyéb iskolai kollaboratív munkamódszerek (például a projekt módszer, melynek informatikai eszközökkel támogatott változatát ld. e kötetben) különösen alkalmasak arra, hogy Web 2.0 technológiákkal gazdagítsuk őket.
A 21. század iskolája

Az interneten spontán kialakuló és személyes érdeklődéstől hajtott felhasználói közösségek működését maga a közösség kontrollálja: itt is Web 2.0-es, azaz kollaboratív filterezés folyik⁹, amely így a közösség révén teszi megbízhatóvá a tartalmakat hosszú távon. Az internethasználattal kapcsolatos, a keretprogramot (a tartalmak feltöltését és bontakozását vezérlő szoftvert) futtató szerver tulajdonosának országában érvényes jogszabályok betartása természetesen itt is kötelező. A Flickr fotómegosztó környezetben (www.flickr.com) tilos a pornográf, rasszista, vagy a magánélethez való jogot sértő felvételek feltöltése. Az oldal beszédes főcíme: „Oszd meg a felvételeidet! Nézegesd a világot!” A Flickr-ben témák szerint rendezett digitális albumokat hozhatunk létre, a kevésbé sikerült fotókat egyszerűsíthetjük át.

82.ábra: Flickr fotómegosztó szoftver
rö képszerkesztő programmal javíthatjuk, és böngészhetünk mások képtárain témák vagy országok szerint. Ha például egy földrajztanár afrikai utazásának legszebb felvételeit szeretné megosztani diájaival úgy, hogy egyben felhívja figyelmüket mások ugyanott készült, érdekes felvételeire, ezt a legegyszerűbben – és a címzettek levelező rendszerének túlterhelése nélkül – úgy teheti meg, ha mappát nyit a Flickr-ben, és ennek címét, és böngészésének eredményeit – más érdekes fotósorozatok lelőhelyét – levélben osztja meg diájaival. (A Flickr a kommunikációra is kínál egyszerű, automatikus körlevélküldő szolgáltatást.) Több napos osztálykiránduláson, esténként könnyen feltölthetők a digitális kamerák képei erre az oldalra, és az otthon maradt kollégák, barátok a készülés napján már láthatják is a felvételeket. Önálló kereséskére ösztönző kérdések is feladhatók, képes feladatlapok is készíthetők a több százezer feltöltött fotó felhasználásával, hiszen a legtöbb felvétel szabadon letölthető, és tetszés szerint felhasználható – persze a forrás megjelölésével. (A szellemi közjavakkal – Creative Commons – kapcsolatos előírásokról részletesen olvashatunk az IT3 projekt, 2007 kötetekben, webes forrásuk az Irodalomjegyzékben.)

Az internetes tartalmak között nehéz az eligazodás, s a találatok tartalmi értékelésére, pedagógiai relevanciájuk megállapítására sem jut mindig elég idő. (Az információkeresésről és szűrésről, a digitális könyvtárazásról ebben a könyvben hasznos információkat lehet találni, például megtudhatjuk, mit jelent a „címkézés”, és hogyan dönthető el, hogy egy oldal információi mennyire hitelesek.) A tájékozódást segíti, ha hasonló érdeklődésű, képzettségű társak kedvenc oldalaira látogathatunk, akik

83.ábra: del.icio weboldal: internetes tartalomgyűjtő és ajánló szoftver
„előválogatják” és jegyzetekkel értékelik számunkra egy-egy weboldal tartalmát és megbízhatóságát. A del.icio.us oldal az internetes olvasótábor „könyvtári katalógusa”, ahol maguk az olvasók készízik el a leíró tárgyszavakat, azaz „címkéket” (tag).

A del.icio.us-t az oktatásban és a tanár(tovább)képzésben egyaránt jól használhatjuk, hiszen ezen a portálon például nyomon követhetjük egy-egy, tantárgyunk szempontjából fontos tartalom internetes megjelenéseit (követve kollégáink válogatott hivatkozásait), de azt is láthatjuk, milyen témák érdeklik azokat, akikkel érdeklődésünk egy-egy területen rokon. Ezen az oldalon könnyen megoszthatjuk másokkal a számunkra érdekes oldalakat, és rövid időn belül olvashatjuk az általunk ajánlott oldalakra látogatók értékelő megjegyzéseit.

Ezt a könyvet olvasgatva, valószínűleg gyakran találkozik az információs és kommunikációs kultúrával most ismerkedő olvasó olyan kifejezésekkel, amelyekről szívesen olvasna egy rövid, érthető meghatározást vagy bővebb magyarázatot.

A közösségi lexikon, az önálló fogalommagyarázó műfajá lett wikipédia (magyar változata: http://hu.wikipedia.org) mindkét igényüket kielégíti. A bekapcsolódás a tartalom előállításba is rendkívül egyszerű, a szerzői szerepre vágyó felhasználó idejének és (saját belátásán alapuló) szakértelmének megfelelő szinten tud bekapcsolódni a lexikon bővítésébe.
A magyar Wikipédiában, az internetes közösség által naponta bővített és átfogalmazott lexikonban nemrég (2008. július elején) megjelent a százezredik szócikk. Egy-egy szócikk bármikor, bárki által változtatható, ezért azt hihetnők, hogy tökéletesen megbízhatatlan, de ez nem így van. Egyrészt hibajavítóként is hatékonyan működő önkéntes szerkesztősége van (a kezdőlap arra buzdít, hogy ha valamilyen információt sehol sem lelünk, őket kérdezzük), másrészt maga a felhasználói közösség gondoskodik arról, hogy a felfedezett hibák ne maradjanak fenn sokáig az oldalon. A Vitalapon a Wikipédia működéséről és egyes témák megfogalmazásáról folynak eszmecserék, a Laptörténet-ben pedig nyomon követhetjük, hogyan változott meg egy-egy szócikk tartalma az újabb és újabb szerzők keze nyomán. (Bizonyos témáknál ez igen tanulságos tudásszociológiai – vagy éppen aktuálpolitikai – belátásokhoz is vezethet.)

A lexikon tudományos magazinként is működik, mivel a szerkesztők gondoskodnak arról, hogy „A nap szócikke” és „A nap képe” rovatokba érdekes írások és felvételek kerüljenek. A gyakorlatban felhasználót részletes útmutató segíti, a navigációt szoftver eszközök is támogatják. Ha valaki nem találja a számára fontos témát, és szívesen irna róla, a „Kezdő szerkesztőknek” rovatban talál eligazítást. Értelemszerűen sok szócikk foglalkozik az internettel és általában a számítástechnikával. A Web 2.0 témájában is rendkívül gazdag tartalommal, számos hivatkozás segítheti tovább e kötet olvasóit is.

Az oktatásban dolgozók (gyakran maguk is oktatottak) legtöbbször azért fordulnak az internethez, hogy információt szerezzenek. Akadnak azonban olyanok is közöttünk, (tanítványaink között pedig még többen), akik csak úgy, érdekes történetek, új barátok után kutatva nem elégszenek meg a társkereső portálok

85.ábra: Digg közösségi oldal
semmitmondó és nem mindig őszinte adatsoraival, inkább egy jó beszélgetésre vágynak, valami érdekeset akarnak hallani – és esetleg megbarátkozni azzal, aki elmesélte. Ezek az anekdotázni szerető olvasók alapították az angol „áss!” kifejezésből (dig) a Digg!-nek elnevezett közösségi tartalomszolgáltató oldalt. (http://digg.com/)

Az oldalon témák szerint kereshetünk egy érdekes történetet, csatlakozhatunk egy beszélgető csoportjhoz vagy egy olyan közösséghoz, amelyikről úgy gondoljuk, hogy az eddigi beszélgetéseik, feltöltött történeteik alapján velünk rokon érdeklődésű emberek a tagjai. Ha belépünk ebbe a virtuális klubba, rendszeresen értesülünk majd a csoport érdekes találatairól, hiszen időről időre elküldik e-mail címünkre a jó sztorikhoz, érdekes hírekhez vezető linkeket. (Nyelvtanároknak és nyelvtudásukat az anyanyelvi beszélőkkel folytatott beszélgetésekkel szinten tartani igyekvőknek különösen hasznos ez az oldal, hiszen angol nyelvű.) Azért illesztettük a közösségi oldalak sorába ezt a „komolytalan” alkalmazást is, hogy érzékeltessük: a Web 2.0 a felhasználók produktuma, nem a cégeké – a tartalmak itt, szerencsés módon, egyre gyakrabban az emberi igények, és nem üzleti célok szerint alakulnak.

A közösségi web legfontosabb, a pedagógiára gyakorolt hatása valószínűleg az lesz, hogy végre megvalósul a sokat emlegetett szerepváltás: a tanárból mentor, a tanulóból érdeklődve kutató, önállóan művelődni képes élethosszig-diák válik. A „kettő-pont-nullás forradalom” ugyanis technológiai értelemben lehetővé teszi, hogy a tanuló ne csak az iskolai könyvtárban, vagy a parttalan „első generációs weben” vaktában keresgéljen, hanem hatékony közösségi oldalak segítségével is tájékozódjon, miközben tapasztalatait másokkal megosztja. A Web 2.0-val már ma megteremtődtek az önkifejezés széles körben elfogadott, egyre gyakrabban használt, korszerű formái. Ezek beépítése az oktató-nevelői munkába lehetőség és egyben komoly felelősség is az Iskola 2.0 (?) számára.
3.3 Értékek és értékelés
3.3.1 Értékelés – számítógép alapú tesztelés, online teszkörnyezet, adaptív tesztelés

Az osztály országos felmérésre készül. Tavaly még mindenkinek hoznia kellett két jól fogó tollat, amivel beült az iskolapadba, kézhez kapta a meglehetősen vastag tesztfüzetet, és hozzálátott a feladatok megoldásához. A megoldásokat az arra kijelölt üres helyre, esetleg külön lapra kellett írniuk a diákoknak. Idén az egész osztály az informatika laborba ment kitölteni a tesztet, ahol állandó internetkapcsolat mellett oldották meg a diákok a feladatokat. Két tanulásban akadályozott, diszlexiás gyermek kapott egy-egy fülhallgatót, amin keresztül meghallgathatták a feladatokat, a számítógép olvasta fel nekiik. Néhány diák hiányzott az iskolából, Ők jövő héten oldják meg a tesztet. A diákoknak nemcsak feleletválasztós (multiple choice) kérdésekre kellett válaszolniuk, hanem esszét is írtak, grafikusan ábrázolandó matematikafeladatokat oldottak meg, szimulációkkal dolgoztak, virtuális kísérleteket végeztek és számos eszköz használtak annak érdekében, hogy életszerű problémákat oldjanak meg. A számítógép a szerint adta minden diáknak a következő problémát, hogy az előzőre helyesen válaszolt-e. Ha jó választ adott a diák, akkor nehezebb feladat következett, ha helytelenül, akkor könnyebb. Ennek következtében az értékelésnél részletesebb, pontosabb képet kaptak arról, hogy mit tud a diák. Mivel a tesztelés alkalmazkodott a tanulók tudásától tudásához, kevesebb feladatot kellett megoldaniuk ahhoz, hogy pontosabb eredményt kapjunk. A teszt megoldása után a számítógép rögtön elvégezte az értékelést, szövegelemző program segítségével még az esszék értékelését is. Az eredményt e-mailben elküldte a diáknak, a tanárnak, a felmérést szervezőnek, ahol azonnal adatbázis formájában elérhetőek voltak az eredmények.

Ez nem utópisztikus, 22. századi történet, hanem valós, a világ több országában, és hazánkban is hamarosan megvalósuló mérési-értékelési eljárás, módszer, cél. Ahogy és amilyen gyorsan a személyi számítógép és az internet megváltoztatta munkánkat, vásárlási és kommunikációs szokásainkat, úgy tűnik, hamarosan ugyanúgy megváltoztatja azt is, ahogy az iskolában értékelünk, ahogy az iskolai, hazai és nemzetközi felméréseket végzünk. A számonkérés és a felmérések papír nélkül történnek majd, és az eredményre sem kell hosszasan várakozni, hanem azonnal rendelkezésre áll.

1A fejezet alapját CSÁPO BÉNŐ, MOLNÁR GYÖNGYVÉR és F. TÓTH KRISZTINA: A papír alapú tesztek előtt a számítógépes adaptív tesztelés: a pedagógiai mérés-értékelés technikájának fejlődési tendenciái. Iskolakultúra, 2008. 3-4. sz. 3-16. tanulmánnya adta.
Az utóbbi évek gyors technikai fejlődése, ennek az oktatásban való megjelenése fokozódó igényeket támasztott az értékelés újabb adatfelvételi és adatelemzési technikáinak, módszereinek kidolgozása irányában. A számítógép alkalmazása nemcsak leegyszerűsíti a tesztelés folyamatát, hanem olyan hatékony módszereket is lehetővé tesz, amelyeket a hagyományos mérésekkel meg nem lehet közelíteni.

A számítógépes tesztelés szélesebb körű kipróbálására csak az utóbbi években, a számítógépek elterjedése után kerülhetett sor. Tekintettel a számítógépes tesztelés kimeríthetetlen lehetőségeire, kétségtelen, hogy belátható időn belül ki fogja szorítani a hagyományos papír alapú tesztelést. Iskolai kontextusban azonban csak fokozatosan lehet átérni egy ilyen rendszerre, minden lépésben gondosan ellenőrizve, és kiszűrve a nemkívánatos mellékhatásokat (Csapó, Molnár és F. Tóth, 2008).

Ebben a fejezetben áttekintjük a számítógépes tesztelés fő formáit, és bemutatjuk az adaptív tesztelés fontosabb lehetőségeit. Sorra vesszük azokat a problémákat is, amelyeket a pedagógiai alkalmazások felvetnek, és felvázoljuk a megoldás érdekében elvégzendő vizsgálatokat. A számítógépes tesztelés rövid történetére tekintettel a hatásvizsgálatok csak a közelmúltban kezdődtek el, és viszonylag kevés általánosítható eredmény áll a rendelkezésre.

3.3.1.1 A számítógépes és internet alapú tesztelés kulcsfogalmai

A technológia alapú mérés-értékelés

A technológia alapú mérés (Technology Based Assessment – TBA) magában fogalja az összes olyan mérési-értékelési rendszert, amelyben az adatgyűjtésre valamilyen információ-kommunikációs technológiai eszközt használunk. Annak ellenére, hogy ez az eszköz általában a számítógép, a számítógépes mérés-értékelés halmazát magába foglaló bövebb halmazként mégis megkülönböztetjük ezt a kategóriát. A közvetítő eszköz ebben az esetben nem feltétlen a számítógép, lehet PDA, mobiltelefon, szavazórendszer stb. (ezek iskolai alkalmazásáról I. Molnár, 2007), amelyek egy része alkalmas arra, hogy a nap bármely időszakában bizonyos kérdéseket tegyen fel a mérésben résztvevőnek – attól függetlenül, hogy az illető hol van –, s felkínálja az azonnali válaszadás lehetőségét is. A technológiai alapú mérés szinonim kifejezéseként használatosak az elektronikus tesztelés és e-tesztelés (e-Testing) kifejezések is.

A technológiai alapú mérésen belül a legtöbb lehetőséget természetesen a számítógépes értékelés kínálja, és (ma) ennek alkalmazása a legelterjedtebb.
A számítógépes mérés-értékelés

A számítógépes mérés-értékelés során az alkalmazott teszt a számítógép monitorján jelenik meg (on-screen presentation), a teszttelt személy pedig szintén a számítógép segítségével (billentyűzet, egér stb.) adja meg válaszát. A válaszokat rögzíti a szoftver, és általában az elemzés is számítógéppel történik. A számítógépes tesztelés a helyi hálózaton, illetve interneten keresztül is történhet. Ha semmilyen hálózatot (helyi hálózat, internet) nem vonunk be a tesztelés lefolytatásába, akkor a tesztelést végző programot, feladatlapot minden egyes számítógépről be kell gyűjteni.

A számítógépes tesztelés lényegében a számítógép oktatási célú alkalmazásaival egy időben jelent meg. A korábban papír alapú feleletválasztós feladatokat minden nehézség nélkül át lehetett ültetni számítógépre, és ahogy a számítógépek fejlődtek, újabb és újabb számítógépes technikák.

A hálózat alapú mérés-értékelés

A hálózatalapú mérés-értékelés a számítógépes tesztelés egy olyan alkalmazása, amikor a teszt, a feladatok, a tesztelést végző program egy adott számítógépes hálózaton belül érhető el. Ez a hálózat lehet helyi (LAN) vagy az internet, illetve a kettő kombinációja (Jurecka és Hartig, 2007). A hálózatban történő mérés gyakran voltak szükségesített és a feladatok összegyűjtése, elemzése történik. A tesztelés előtt minden egyes adatfelvételben részt vevő gépre installálják a teszteléshez szükséges szoftvert.

Az internet alapú mérés-értékelés

Az internet segítségével folyó teszteléshez az adatfelvételben részt vevő személynek csak internetkapcsolatra és egy internetes böngészőre van szüksége a válaszadáshoz. Nincs szükség arra, hogy a helyi számítógépen futson a tesztelő program. A vizsgázó az azonosítójával tud belépni a rendszerbe, ott csatlakozik a tesztelő szoftverhez, ami a szerverrel kommunikálva választja ki a diák számára a megoldandó feladatokat. A feladatok és a szoftver is a szerveren találhatók. A válaszok, adatok tárolását és kiértékelését is a központi szerver végzi. Ebből adódóan könnyebb és gyorsabb mind a feladatok, a tesztek, mind az egész feladatbank módosítása, és a szoftvert frissítése is. Fontos előny, hogy ha a szoftver külső gépen fut, nem kell minden iskolának saját szoftverrel rendelkeznie.
A számítógépes mérés-értékelés kulcsfogalmainak hierarchikus viszonya

A technológiai alapú mérés-értékelés, a számítógép alapú mérés-értékelés, a hálózat alapú mérés-értékelés és internetalapú mérés-értékelés definíciójuk értelmében egymásra épülnek, hierarchikus kapcsolatban állnak egymással. Az alkalmazott technológia szerint megkülönböztetett szintek egymásra és egymásba épülését a 82. ábra szemlélteti.

A legtágabb fogalom a technológiai alapú mérés-értékelés, ami magába foglalja mind a számítógép alapú, mind a hálózat alapú és az internet alapú mérés-értékelést is. A számítógép alapú tesztelés a technológiai alapú mérés-értékelés egy részterületéte csupán, de általában minden komputeres (asztali számítógép, notebook, classmate, XO) értékelést magában foglal. Hasonló a hálózat alapú és a számítógép alapú mérés-értékelés egymáshoz való viszonya is, az előbbi csak egy részterülete a számítógép alapú értékelésnek. Az internet alapú mérés-értékelés a legkisebb részterület, amely a hálózatalapú mérés-értékelés halmazába tartozik.

A számítógépes tesztelésre kifejlesztett rendszereket az alkalmazott médiumon kívül egy másik dimenzió mentén is csoportosíthatjuk, a feladatlapok, feladatok, itemek típusa, személyre szabottsága mentén. Ezen változó minden egyes szintje megvalósítható a fent nevezett halmazok, részhalmazok bármelyikében. A továbbiakban e dimenzió mentén különtjük el egymástól az egyes lehetőségeket.
3.3.1.2 Online környezet

A számítógépes tesztelés legegyszerűbb formája a papír-ceruza teszek egyszerű, az eredetivel megegyező formában való digitalizálása. Ebben az esetben csak a feladatokat közvetítő eszköz, vagyis a médium változik meg. A feladat a papír helyett a képernyőn jelenik meg, a válaszadás billentyűvel, egérré, érintőképernyővel, vagy valami egyéb elektronikus eszközzel történik. A tesztelés továbbra is lineáris marad, a feladatok azonos sorrendben jelennek meg minden egyes tesztelt személy előtt. Érintőképernyőt használva papír-ceruza teszteléssel való egészen közeli hasonlóságot lehet elérni, a vizsgázó – az érintőképernyő technológiájának függvényében – egy digitalizáló vagy egy közönséges toll segítségével jelöli meg válaszát. Egér- vagy billentyűhasználat esetében már szükség van némi technikai készségre, ha pedig a billentyűzetet hosszabb szöveget kell bevinni, már számíthat a gépi felület készség fejlettsége is. A legtöbb számítógép alapú teszt feleletválasztós feladatokból álló standardizált teszt (Jurecka és Hartig, 2007).

A számítógépes tesztelés már ezen a szinten is számos előnyvel jár. Annak ellenére, hogy a tesztelt személy számára nem jelent nagy különbséget, a javítás, kódolás, rögzítés munkafázisait ki lehet iktatni, vagy jelentősen le lehet egyszerűsíteni. Objektív feladattechnikát alkalmazva a teszt kiértékelése azonnal megtörténik, az eredmény rögtön rendelkezésre áll. A papír-ceruza tesztelés során emberi munkára van szükség a válaszok javításához, rögzítéséhez, ami magában foglalja az adatvesztés lehetőségét, az adatminőség romlását is.

Az adatminőség javulásával a mérés egyik minőségi kritériumát, objektivitást növeljük. A számítógép nem fáradt, nem unatkozik, nem frusztrált (Becker, 2004), nem sürgeti a tesztbeadást, valamint megtakaríthatjuk a tesztet felfevő tanároknak felkészítését is. Az adatfelvétel minőségének javításához továbbá az is hozzájárul, hogy a feleletválasztós feladatokra adott válaszok véletlenszerűségét minimalizálhatjuk (mind alternatív választás, mind többszörös választás esetén), ennek az a magyarázata, hogy a diákok nem tudnak előre-hátra lapozni a feladatsorban.

A számítógépes tesztelés során növelhetjük a teszt értékelésének objektivitását, minőségét is, mivel egyrészről a diákok eredményét nem befolyásolja a javító szigorúsága, másrészről megszűnne a javítás, kódolás és rögzítés során keletkezett kiértékelt hibák. A számítógépes kiértékelés segítségével akárhányszor futtatjuk le a kiértékelést, ugyanarra az eredményre jutunk. Az automatikus értékelés gyors és egyszerű folyamat, még összetett kiértékelő algoritmusok esetén is. Az emberi figyelmetlenség miatt bekövetkező kiértékelési hiba az esetek 10%-ában fordul elő (Butcher, 1987. 17. o., idezi: Becker, 2004). Fontos megjegyezni, hogy ha automatikusan értékelünk ki, akkor nem csak a feladat javításakor előforduló hibákat zárhatjuk ki, hanem a tradicionális tesztelés alkalmával végzett
adatrögzítéskor bekövetkező elgépelések hibáit is (pl.: 45-öt rögzítenek 54 helyett). Az automatikus kiértékelés egyszerűsíti a dokumentációt és a szervezést, segítségével össze lehet kötni az adatbankokat, és gyors lehívhatóságot (BECKER, 2004) biztosít.

A számítógépes tesztelelés segítségével az adatok gyorsan aktualizálhatóak, valamint azonnali visszacsatolási lehetőséget nyújt a diákok, tanárok, iskola, régió stb. számára. Az azonnali visszacsatolás pedig hozzájárul az oktatási-tanulási folyamat minőségének javulásához.

A számítógép alapú tesztelelés induló költsége természetesen nagyobb, mint egy papír-ceruza tesztelelés lebonyolítása, viszont a rendszer kiépítése után a számítógép alapú tesztelelés számos megtakarítási lehetőséget kínál. A számítógépes kiértékelés segítségével kiküszöbölhetjük a tesztlapok nyomtatását, fénymásolását, csomagolását, szállítását, válaszlapok készítését stb., ezáltal az eszközköltség is jelentősen csökken. A tesztek javítására nem kell javítókat alkalmazni, a rögzítésre rögzítőket, sőt az alapstatisztikai számítások abban a pillanatban elkészülnek, ahogy a diák befejezte az utolsó item megoldását. Számítógépes tesztelelessel a dokumentációs költségek 2/3-át meg lehet spórolni (ROSE és mtsai, 1999).

Az elektronikus rendszerre való áttérésnek ezen a fokán már lehetőség adódik a papír alapú és a számítógép alapú tesztelelés hatékonyságának, eredményeinek összehasonlítására. A szakirodalomban számos kritikus észrevetelrel is találkozzunk a számítógépes teszteleléssel kapcsolatban. Leggyakrabban a számítógépes tapasztalat hiányát és a számítógéptől való idegenkedést említenek. Ahogy azonban az IKT eszközök terjednek a hétköznapi életben, ennek a tényezőnek a súlya egyre kisebb lesz. Nem szabad azonban megfeleldekezni arról, hogy mindaddig, amíg a számítógéphez való hozzáférés tekintetében iskolák, társadalmi csoportok és családok között jelentős különbségek vannak, gondosan megvizsgálni, nem hoz-e az alkalmazott eljárás egyeseket hátrányos helyzetbe. Gondoskodni kell arról, hogy az alkalmazott technika kezelése senkihez ne okozzon nehézséget, és ne vonja el a figyelmét az érdemi feladatmegoldó munkától. Ennek egyik legbiztosabb módja magának a számítógépes tesztelelésnek az elterjesztése és gyakori alkalmazása.

A számítógépes tesztelelés adta lehetőségeket jobban kihasználniuk, ha gazdaggítkhatjuk a tesztelelés során alkalmazott feladatok típusát. Alkalmazhatunk multimédiás (hang, mozgó kép, animáció, szimuláció, interaktív szimulácó stb.) elemekkel gazdaggított feladatokat is, sőt a kiegészítő technológiák alkalmazásával lehetőség nyílik a fogyatékokkal élő tanulók tudásának mérésére is. A „látási, hallási és a kézipás készségekével kapcsolatos problémák jó része kiküszöbölhető” (KARPÁTI, 2002. 8. o.). Számos kutatás fókuszával a háromdimenziós tesztkörnyezet megvalósíthatóságának kérdéskörére. Ebben a háromdimenziós tesztkörnyezetben a
tesztelt személy szabadon mozoghat, cselekedhet, beszélgetéseket folytathat.
A legfrissebb kutatási eredmények szerint (pl.: Frey és mtsai, 2007) az ilyen típusú tesztkörnyezethez könnyű alkalmazkodni.

A diákok konkrét válaszán kívül további adatokat is gyűjthetünk a tesztelés során a tanulókról. Mérhetjük a diákok egyes feladatok megoldásához szükséges idejét, rögzíthetjük reakcióikat, az egér mozgatását, a billentyűk lenyomása között eltelt időt, szemmozgásukat, amelyek további adatokat szolgáltatnak a figyelemre, gyorsaságra, olvasási képességre (visszaugrások száma) stb. vonatkozólag.

A feladatokból különbözőképpen, tesztelő programtól függően állíthatunk össze teszteket. Eldönthetjük, hogy a diákok vissza tudjanak-e „lapozni” a tesztelés folyamán, hogy egyszerre csak egy feladatot lássanak-e, vagy a papír alapú tesztekhez hasonlóan több feladatot is lássanak egymás alatt. Legyen-e lehetőségük javításra, korlátozzuk-e az egyes feladatok megoldására szánható idő mennyiségét, vagy esetleg csak az egész tesztre vonatkozólag állapítsunk meg korlátot. Lássák-e a diákok, hogy mennyi idejük és kérdésük van még hátra, továbbmehet-nek-e akkor is a feladatokon, ha nem adnak választ, vagy mindenképp valamiféle választ kell adniuk a következő elem megkapásához, és még sorolhatnánk az eldöntendő kérdések körét. Egy másik lényeges kérdéskör a teszt összeállításának módjára vonatkozik, ami újabb csoportosítási lehetőséget kínál.

A tesztest típusai az egyéne szabottság mérete szerint

A teszt összeállításának legegyszerűbb módja az, ha az előre digitalizált feladatokat statikusan egymás után fűzve adjuk a diákoknak (Linear testing). Ebben az esetben a papír-ceruza teszthez hasonlóan minden egyes diák ugyanazon feladatokat kapja, ugyanabban a sorrendben.

Fejlettebb szint az a lehetőség, ha sok feladattal rendelkezünk, és csak azt határozzuk meg, hogy hány feladatot kapjon az adott diák, a többit a programra bízunk, ami egy random függvénytel biztosítja, hogy a diákok nagy valószínűséggel különböző teszteket oldjanak meg (Linear on-the-Fly testing; Al-Ali, 2007). Ez a tesztelési eljárás nem veszi figyelembe a diák képességszintjét.

Újabb lehetőség, ha résztesetteket definiálunk (Testlet testing; Al-Ali, 2007), amelyek minden egyes feladatát megkapja a diák, ha az adott részteszt kiválasztásra kerül a tesztelés folyamán. Az egyes feladatok résztesztbe sorolása történhet például nehézség vagy témakör szerint. A tesztelés ezen típusa sem veszi figyelembe a diák képességszintjét, viszont lehetőséget ad a részteszten belül az egyes feladatok ismételt kijelölésére.

Az a negyedik lehetőség, ha különböző feladatcsoportokat definiálunk, – esetleg feladatcsoportokon belül nehézségi index szerinti alakítunk ki csoportokat –, majd a teszt összeállítása során csak azt határozzuk meg, hogy melyik feladat-
csoportból hány és milyen nehézségű feladatot válasszon ki véletlenszerűen a program. Ebben az esetben – megfelelő számú feladat mellett – már nagy valószínűséggel biztosítható, hogy az egymás mellett ülő diákok adott időpontban különböző feladatokat kapnak. A feladatok nehézségének előzetes indexelése mellett még az is biztosítható, hogy mindenki közel azonos nehézségű tesztet oldjon meg.

A diákok közel azonos nehézségű, de mégis különböző feladatokat kapnak a tesztesés során akkor is, ha az előre definiált feladatok bizonyos változóit véletlenszerűen generáltjuk a programmal. Ennek a módszerek az alkalmazása gya-kori fizika, kémia és matematikai feladatok esetén. Például a szöveges feladatok szövege és esetleg néhány adata változatlan marad, míg más változókat véletlenszerűen generáltatunk a programmal, s ennek következtében minden egyes diák más-más feladatot old meg.

Az eddig említett tesztelési eljárások figyelmen kívül hagyják a diák aktuális képességszintjét. Egy, a korábbiaktól lényegesen eltérő mérés-értékelési eljárás, ha a tesztesés folyamatát egyéni szembeséget, azaz egy adott diák tesztjének nehézségi szintjét befolyásolja a diák képességszintje. Ehhez egy teljes mértékben parametrizált, indexelt és egy azonos nehézségű, illetve képességskállal leírható feladatbank szükséges. Ha a feladatbankból az egyes feladatok kiválasztása a vizsgázó előző válaszainak függvényében történik, adaptív tesztelésről beszélünk.

3.3.1.3 A számítógépes adaptív tesztesés

A számítógépes tesztesés igazán nagy lehetősége az adaptivitás, vagyis az, ha lehetőség van arra, hogy a vizsgázók attól függően kaphassanak újabb felada-tokat, hogy hogyan oldották meg az előzőt. A számítógépes adaptív tesztesés (Computerized Adaptive Testing – CAT) a teljesítmények sokkal finomabb felbontását, mérését teszi lehetővé. Elméletileg tíz feladat megoldásával 210, azaz az 1024 lehetőség közül választhatjuk ki, hogy pontosan milyen a vizsgázó képessége egy adott területen. Ez persze elméleti lehetőség, mert a gyakorlatban ehhez az kellene, hogy legyen 1024 olyan feladat, amelyik nehézsége egyenletesen fedi le a felmérendők képesség-tartományát. Ilyen feladatbankot azonban szinte lehetetlen elkészíteni, mivel a feladatok pontos nehézségét csak empirikus úton lehet meghatározni, és nem lehet „rendelésre” gyártani előre meghatározott nehézségű feladatokat. Mindenesetre ez a becslés jelzi az adaptív tesztesés elméleti lehetőségeit, de egyben a megvalósítás korlátait is.

A hagyományos papír-ceruza tesztesés során, illetve a tesztek digitalizált formában történő felvétele esetében is minden egyes személy ugyanazokat a feladatokat kapja, ugyanabban a sorrendben. Ezzel szemben az adaptív tesztesés során minden egyes személy a számára leginkább diagnosztikus erővel bíró feladatokat
kaphatja, azaz elhanyagolható annak a valószínűsége, hogy minden egyes személy ugyanazon feladatokat ugyanabban a sorrendben oldja meg. Ezáltal új lehetőségek nyílnak meg a mérés-értékelés területén.

A vizsgatartás, mérés-értékelés e formáját analógáiaiába állíthatjuk a szóbeli vizsgátással, ahol a vizsgatató a kérdéseit gyakran a vizsgázó képességeihez igazítja. Ha a vizsgázó egy közepes nehézségű kérdésre helyes választ ad, akkor a vizsgatató következő kérdése általában nehezebb, helytelen válasz esetén könnyebb kérdés következik. A vizsga végén az értékelés annak függvényében történik, hogy milyen nehézségű kérdésekre tudott még helyesen válaszolni a vizsgázó. Ha csak nehéz kérdéseket fogalmazna meg a vizsgatató, akkor az alacsonyabb képességű vizsgázók értékelése nehézkessé válna, míg csak könnyű kérdések esetén nem lehet a jobb képességű vizsgázókat differenciálni.

Az adaptív tesztelés során a fentiekhez hasonló módon történik a feladatok kiválasztása, de a szóbeli vizsgával ellentétben néhány tényező tekintetében pontosabb, egzaktabb módon (Frey, 2007). A tesztelés során kiválasztásra kerülő kérdéseket a korábban kiválasztásra került feladatokra adott válaszok határozzák meg. Ez az eljárás azt a célt szolgálja, hogy minden egyes személy elé csak olyan feladatok kerüljenek, amelyek a lehető legnagyobb információval, diagnosztikus erővel bírnak az adott személy vizsgált képességszintje tekintetében, azaz amelyek lehetőleg a legközelebb vannak valós képességszintjéhez. A kiválasztás a legtöbb esetben a feladatok nehézsége alapján történik. A magasabb képesség-szintű egyénekhez nehezebben, az alacsonyabb képességszintűek átlagosan könnyebb feladatokat kapnak a tesztelés során. Ezzel az eljárással elkerülhető, hogy az alacsonyabb képességszintűeket túl nehéz feladatokkal frusztráljuk, illetve a magasabb képesség-szintűek tesztletre szánt idejét a könnyebb feladatok megoldásával töltsük ki. A feladatok kiválasztása előzetesen meghatározott algoritmus alapján történik. Ez az algoritmus egy olyan szabályrendszer, ami meghatározza az első és a rákövetkező feladatok kiválasztását, továbbá specifikálja a tesztelés befejezésének kritériumait is.

A számítógépes adaptív tesztelés összességében kevesebb feladat használatával és rövidebb idő alatt pontosabb képességszint-meghatározást tesz lehetővé. A technológia kihasználásával növelhetjük a tesztelés során felhasznált feladatok típusát például azzal, ha multimédiás elemeket alkalmazunk. A teszt adaptivitásánál fogva nő a teszttípusoság, mivel a jól és rosszul megoldott feladatok, illetve az előre meghatározott algoritmus függvényében személyre szabott tesztet tölt ki mindenki, azaz meghatározzuk a súgás, lesés és előre kondicionált feladatok problémája, viszont megmarad a standardizált mérés. Ebből adódóan gyakran ismételhető, nem szükséges minden egyes mérés során új teszteket kidolgozni, mert a rendszer az előre kifejlesztett adatbankból válogatja össze a diákok képesség-
A 21. század iskolája

szintjének legpontosabb meghatározásához szükséges tesztet. Ezért a rendszer alkalmas arra, hogy a tanulókat megfelelő gyakorisággal felmérje, ezáltal állandó visszajelzést biztosítson az aktuális fejlettségük állapotáról.

Az azonos feladatbankon alapuló eredmények a közös nehézségi, illetve képességskálán definiált feladatok miatt viszonyíthatóak egymáshoz, azaz a tanuló korábbi fejlettségi szintjével összevethető az aktuális eredménye, még akkor is, ha összességében minden egyes alkalommal más feladatot oldott meg a diák. Ezért kiküszöbölődik a longitudinális fejlődésvizsgálatok egyik alapproblémája, mely szerint ugyanazt a tulajdonságot többször egymásután ugyanazzal a teszttel kell felmérni, azonban így a tesztfeladatok egyre ismerősebbek lesznek, ami torzíthatja az eredményeket.

Összevethető a többi diák azonos mérésben megoldott teszteredményével, illetve az adatbank felépítése és az adott képességterület skálázása során meghatározott tudományosan kidolgozott standardokkal. Ennek következtében a papír-alapú keresztmetszeti vizsgálatok megvalósítására könnyen megvalósítható a standardizált longitudinális vizsgát.

Az CAT azáltal teszi személyre szólóvá a mérést, hogy minden tanuló többségében a saját képességszintjének megfelelő feladatokat old meg. Ezáltal a mérés egészre sokkal szélesebb képességspektumban tud átfogni, mint a papír alapú fix teszek, mégis minden egyes esetben érzékenyebb, azaz az előre meghatározott fix, statikus teszteknél kisebb különbségeket ki tud mutatni. A képességszintek közé eső feladatok minden diák számára optimális kihívást jelentenek, így a munka nem válík unalmassá, és nem okoz túlzott szorongást sem. A tesztelési folyamat az optimális tapasztalatok (a flow-élmény, I. Csíkszentesmihályi, 1997) sávjában marad. Mindez előnyősen hat az érdeklődésre és a motivációnra, aminek a tesztek gyakori alkalmazásánál meghatározó jelentősége van.

A felsorolt előnyös tulajdonságok nagyon vonzóvá teszik a CAT alkalmazását, azonban egy jól működő CAT rendszer kidolgozása rendkívül bonyolult feladat. Még abban az esetben is, ha a mérendő tulajdonság egyszerűen leírható, a feladatok empirikus nehézségét csak megfelelő mintán való kipróbálással lehet meghatározni. Az elkészült feladatok jelentős részéről már az első kipróbálás során kiderül, hogy valamilyen szempontból hibásak, nem differenciálódnak, nem illeszkednek a modellbe stb. A szúrók átjutó feladatoknak pedig nem megfelelően szűrődik a nehézsége a felmérendő spektrumon. A fejlesztés újabb fordulóiban további feladatok készülnek, már szándéktalan könnyebbek vagy nehezebbek a még „üres” képességtartományok lefedésére. Egy feladat elkészítése során a nehézségeivel „beletalálni” egy adott képességtartománya szinte lehetetlen, ezért általában több tucatnyi feladatot el kell készíteni, ki kell próbálni, mire közülük legalább egy megfelel az elvárásoknak. Nehezíti az elvégzendő fejlesztő munkát,
ha mindezt iskolai kontextusban kell elvégezni, hiszen így bizonyos tudást csak a tanév megfelelő szakaszában lehet felmérni, így korrekciós fejlesztő ciklusokra esetleg csak egy újabb év múlva kerülhet sor.

3.3.1.4 A számítógép alapú mérés-értékelés és a PISA-vizsgálatok

A PISA szakértői ettől azt várják, hogy csökken a szervezési költség és a diákok tesztelés során igénybe vett ideje is. Hosszútávon számos további előnye is lesz a számítógépalapú tesztelés bevezetésének: lehetőség nyílik a gondolkodás olyan aspektusainak mérésére, amit papír alapú teszteléssel nem lehet megvalósítani.

3.3.1.5 Perspektívák és problémák

Mint minden új, a hagyományostól eltérő módszer bevezetésekor, a számítógépes tesztelés esetében sem csupán a lehetőségekre, hanem a problémák és veszélyek elemzésére is figyelmet kell fordítani.

A számítógépes tesztelés megvalósításának egyik alapfeltétele a megfelelő hardver és szoftveres környezet megteremtése az iskolákban és a tesztelés központjában. Az iskolákban a csoportos teszteléshez legalább egy, erre a célra használható számítógépekkel berendezett tanteremre van szükség. Ha ezeket a tantermeket a számítógépes tesztelés céljaira kellene létrehozni, az vállalhatatlan beruházást jelentene, és a fejlesztés költségei csak sok év után térülne meg.

Egészen más a helyzet, ha ezek a tantermek már ott vannak az iskolában, és többek között erre a céla is használhatók, hiszen így azonnal jelentkezik a költséghatékonyság előnye. A központi hardver és szoftver felállítása, a feladatbank kifejlesztése a papír-ceruza tesztek elkészítésénél költségesebb, de a karbantartása és alkalmazása már kevésbé költséges.

Az adaptív teszteleléshez elegendő iskolánként egy tanteremmel számolni, ahol a párhuzamos osztályok egymás után oldhatják meg a feladatokat. Az adaptív feladatkiosztás biztosítja, hogy a tanulók sokféle feladattal találkoznak, ezért nem kell azzal a problémával számolni, hogy a párhuzamos osztályokban tanuló diákok elmondják egymásnak a feladatokat. Az online teszteleléshez elegendő egy böngészőprogram, aminek segítségével elérhető a központi szerveren futó tesztelő program és feladatbank. A szabályosan felszerelt gépekre tehát lényegében semmit nem kell a tesztelelés érdekében telepíteni. Ebből a szempontból Magyarországon hamarosan meglepősen az online tesztelelés iskolai feltételei, így ma már fel lehet vetni az online tesztelelés elterjesztésének kérdését.

Nehezebb kérdés a társadalmi feltételek megteremtése. Időbe telik, amíg minden érintett (diákok, tanárok, szülők, döntéshozók) megismeri és elfogadja a tesztelelés új lehetőségeit. A személyre szabott számítógépes, online tesztelelés Amerikában már jelenős műlttal rendelkezik, Európában azonban még csak most kezdődtek meg a szélesebb körű iskolai alkalmazással kapcsolatos kísérletek. Rendkívül fontos, hogy mielőtt bármilyen komoly tétel bíró számítógépes tesztelelés elkezdődik, lehetőség legyen a rendszer megismerésére, és az alkalmazás feltételeiről szakmai konszenzus alakuljon ki.

Az adaptív gondozás alapú tesztelelésSEL kapcsolatosan az egyik legtöbbet vitatott kérdés a diákok és a tesztelelést vezető személy informatikai jártasságának (ICT literacy, ICT familiarity) teszteredményeket befolyásoló hatása, amelyek kulturális, etnikai és a nemek közötti teljesítménykülönbségek, az emberek között lévő digitális szakadék (digital gap) hatásának feldolgozásához vezethetnek. Ez a problémakör további validitási kérdéseket is felvethet, mivel ezen a módon az informatikai jártasság, vagy a számítógéptől való félelem szintje megjelenik a teszteredményekben is, holott az nem képezte a vizsgálat tárgyát. Az ezen a területen végzett kutatások sem szolgálnak egységes eredménnyel. A kutatási eredmények alapján egyrészt van összefüggés a teszt eredménye és a személy informatikai jártassága között (pl.: TSENG, TIPLADY és WRIGHT, 1998), másrészt ez a befolyásoló hatás nem szignifikáns (pl.: POWERS és O’NEILL, 1993). Általánosabban is megfogalmazhatjuk a kérdést, vajon a tesztelelés médiája az informatikai jártasság szintjétől függetlenül bír-e befolyásoló erővel.

Feltehetjük a kérdést, vajon ugyanazt a tudást méri a papír alapú és a számítógép alapú teszt, illetve meddig mér inkább ugyanazt a tudást. Összehasonlíthatóak-e a különböző médiumon felvett teszteredmények? Ezek a kérdések már számos
A 21. század iskolája

kutatást indukáltak és a mai napig is foglalkoztatják a kutatókat. Az egyes konkrét vizsgálatok ugyanis nem adnak még általánosítható választ a problémára. Feltehető, hogy minél inkább megfelelőtethető egymásnak flexibilitással, feladattípusok, alkalmazott elemek tekintetében a papíron, illetve számítógép segítségével kitöltött tesztek, annál kisebb a médiáhatás. Ezt a feltevést azonban konkrét elemzésekkel kell igazolni, és meg kell határozni, milyen mértékük az említett hatások. Minél inkább kihasználjuk a számítógép adta lehetőségeket, a számítógép előtt írt és a hagyományos tesztek különböző feladattípusain elért eredmények annál inkább eltérnek egymástól. Ezért az online és papír alapú tesztek eredményeinek összehasonlításakor olyan metrikákat/indexeket kell meghatározunk, amelyek lehetővé teszik a tesztpontszámok átváltását.

A tanulmány írása idején Molnár Gyöngyvér Bolyai János Kutatási Ösztöndíjban részesült.

3.3.2 A jövő iskolájának pszichés komfortja

„Az empátia, a bizalom, a kongruencia és az elfogadás légkörében minden személyiség alkalmassá válik a tanulásra.” (CARL ROGERS)

Olyan iskolát szeretnénk, amelyen a szereplők jól érzik magukat, hatékonyan használják a technika új lehetőségeit, örömmel végzik feladataikat. Ez nem azt jelenti, hogy csak a kedves és kevés erőfeszítéssel járó feladatokat kell megoldani, hiszen ez életidegen burok lenne a tanulók körül. Az iskola pszichés komfortját mint a jövő iskolája tanulási környezetének egyik alapelemét vizsgáljuk a következőkben.

3.3.2.1 Az iskolai légkör

Az új technikai lehetőségek bevezetésével, a feladatok és a kapcsolatok átformálásával új lehetőségek és új nehézségek jelennek meg. A jövő iskolájának nem csak technikailag, hanem humánus légkörében és világos követelményrendszerében is fejlődnie kell.

HERZBERG (idézi KLEIN, 2000) rámhatat arra, hogy a rossz munkahelyi közérzet okai elsősorban az emberi kapcsolatokban keresendők. Megállapítása az iskolai környezetre vonatkoztatva is igaz. Igazgatókat, tanárokat kérdezve tapasztaljuk, hogy elégedettségeik, nehézségeik forrásákönt a megbecsülés, az „emberi hang” hiányát, a fenntartóval, a tantestületen belüli vezetővel, kollégával, diákokkal, szülőkkel való konfliktusaikat, a túlterhelést jelöljik meg. Ezek következménye az iskola
Az iskola harmonizálása

A tantestületben uralkodó hangulat és értékrend elsőszámú meghatározója és felelőse az iskolavezető. Az iskolai működés stabilításához a vezetőnek a mindenkori fenntartó és oktatásirányítás gyakran változó elvárásait nem automatikusan, hanem mérlegelve és a helyi adottságokat figyelembe véve, azokat ésszerűen alakítva kell végrehajtania. A mindennapi operatív teendők ellátását jelentősen segítheti, ha tudatosan vállalja a csapatépítés és szemléletformálás feladatát. Különbőző szerepek – hivatalnok, tanár, vezető, stb. – összehangolásában, értelmezésében segítséget nyújthatnak a vezetőképző, csapatépítő tréningek. Meg kell jegyeznünk, hogy a tréningek során gyarapodhatnak ismereteink, változhat szerepértelmezésünk, tanulhatunk új technikákat, de keveset fog változni a személyiségünk. Az alkalmasságot a belépéskor vizsgálni kell. Ennél is több információt nyújt a próbaidő. Egy félév elején a jövő vezetőkre, csapatépítési feladatokat kell eladni. Különösen fontos, hogy a vezetők, tanárok és a szülők részére a tréningek a kapcsolati és szerepmodellt is kidolgozhassanak. Ezek a művek olvasmányként, vagy tréningen elsajátítva, esélyt adnak a harmonizált együttműködésre. (GORDON, 1989)

Az iskolapszichológus

A jövő iskolájának fontos szereplője az iskolapszichológus. Feladatai közé tartozik a kudarcok, konfliktusok közös feldolgozása. Természetesen nem tolakodó módon, hanem az érintettek kérésére. Konzultációk és tréningek során segít a harmonikus őszinte légkör megteremtésében. Az általa vezetett esetmegbeszélő csoportokban a tanároknak módjuk van egymás tapasztalatait megélni, átvenni, és saját megoldatlan problémáikra választ keresni. Részletívek és szupervízió során segíthet az egyéb órai és szerepértelmezési problémák megoldásában.
3.3.2.2 Konfliktuskezelés

Az iskolai szereplők – tanárok, diákok, vezetők, más érintettek – pszichés komfortjának létrehozásában és fenntartásában jelentős szerepe van annak, hogy a felmerülő konfliktusokat hogyan kezelik, miként oldják meg. Vajon vannak-e jó konfliktuskezelési modelljei a pedagógusoknak? Pszichológiai értelmezésben vizsgáljuk a következőkben a konfliktushelyzetek kezelésének lehetséges módjait.

A konfliktushelyzetek jelentős része a helyzet újraértelmezésével megoldódik. Amennyiben mégsem, érdemes végigfutni gondolatban a fenti ábrán.

A konfliktus frusztrált, feszült állapotot hoz létre. Ha ilyenkor elveszítjük türelmünket – megsértődünk, dühösek leszünk a másik félre, fogást keresünk rajta –, akkor nem tudunk intelligens megoldást találni a konfliktusra. Primitív válasz születik. Ha megtehetjük, a feszültséget agresszióként éljük ki. Mivel ezt az iskola falai között többnyire nem engedhetjük meg magunknak, ezért a feszültség a szorongás, gyomorfájás és más pszichoszomatikus tünetek formájában ölt testet.

A megoldatlan konfliktusok végül önértékelési zavarokként jelennek meg. Ennél talán még rosszabb következmény, hogy egy sajátos harc kezdődik az érintettek, például a tanár és diák között.

Lehetséges, hogy a fent leírtak helyett elhárító mechanizmusok lépnek működésbe, amelyek a pozitív én-kép fenntartására irányulnak, akár az önbecsapás árán is. Hamis, de elviselhető kiutat, magyarázatot kötni a szereplőknek.
Az elhárító mechanizmusok arra ösztönzik az egyént, hogy nehézségeiért, konfliktusaiért, hibáiért valaki mást, valamilyen rajta kívülálló körülményt tegyen felelőssé. Gyakori példa erre, amikor a gyenge érdemjegyért a diák tanárát hibáztatja. Ugyanakkor érdekes megfigyelés, hogy a gépi értékeléssel a számítógép hibajelzéseivel kapcsolatban visszafejlődnek az indulatos reakciók, mert a gépnek az esetek döntő többségében igaza van. Az elhárító mechanizmusokat kikapcsoljuk.

A tanár által képviselt konfliktuskezelési mód akár jó, akár rossz, mintául is szolgál a diákoknak.

A fenti modell természetesen alkalmazható az igazgató és a tanárok, tanárok és tanárok, tanárok és szülők közötti konfliktusok kezelésére is.

A másikról akkor feltételezünk sok hamisat, rosszat, ha nem ismerjük. A napjainkban egyre gyakrabban tettlegességig fajuló tanár-szülő, tanár-diák konfliktusok megelőzésének egyik eszköze lehet az előzetes beszélgetés. Meg kell kísérelni a diákokkal és szülőkkel a személyes kapcsolatfelvételt. Ha a konfliktusok megjelenése előtt kialakul a kölcsönös elfogadás, akkor csökken a valószínűsége az agresszív reakcióknak az esetleges felmerülő konfliktus kapcsán. Rosszul szocializált embereknél nem várt agresszív válasz így is előfordulhat. Ha a tanár mindent megtett a helyzet konszenzusos megoldására, és az agresszív viselkedés ismétlődik, akkor az iskolapszichológus, az igazgató, az iskolai rendtartás és a törvények adják meg a további lépések kereteit.

3.3.2.3. Az erkölcsi normák és értékek felvállalása
a stabilizálás egyik feltétele

A társadalmi szinten jelentkező értékesztés, az önérényesítés szocializálatlan formái, valamint a tanárok tekintélyvesztése instabıl állapotot hozott létre. A szabályok és tabuk átlépése sokak szemében már nem akadály. Nincs kire mutogatnunk, hiszen mi, a mai diákok szülei, nagyszülei hoztuk létre ezt a helyzetet. Megjavítására, rendezésére is nekünk kell megtennünk az első lépéseket. Kezdetként iskolai szinten elfogadott és vállalt morális és viselkedési keretekre van szükség. Ez formálisan az iskola házirendjében ugyan megjelenik, de tarta-
lommal csak az iskolai élet szereplői tölthetik meg, amennyiben ez bennük is él, nem csak papirokon. Ez a belsővé vált értékrend kisugárzik. Elrejteni is nehéz. A metakommunikáció keresztül észrevétlenül is formálja a környezetet.

A közösségeknek akkor lesz esélyük a harmonizált együttműködésre, ha tisztáztottak az egymással szembeni elvárások, erkölcsi szabályok. Az etikus viselkedési normák fontosságára KÖPP MÁRIA (1998) hívja fel a figyelmet.

„DURKHEIM „homo duplex” modellje szerint az ember egyrészről biológiai igényeinek önző kielégítésére törekszik, ez az individuális magatartás nehézzé teszi a társadalom szerveződését. Másrészről megvan a képessége arra, hogy erkölcsi értékekben higgyen, ami alapját képezi a közmegegyezésnek és a kollektív tudat kialakulásának. Ez a társadalmai stabilitás alapja. A DURKHEIM által bevezetett „anómia” fogalom a társadalomban az értékek meggyengülését jelenti, azt az állapotot, amikor az egyén úgy látja, hogy csak deviáns úton érhet el megfelelő életkörülményeket, étletminőséget. Az értékek elvesztése Durkheim szerint olyan társadalomhoz vezet, ahol mindenki mindenkinek farkasa, és amely társadalom nagy valószínűséggel tönkreteszi önmagát.”

88.ábra: Az erkölcsi fejlődés szintjei (KOHLBERG szerint).
Tanulóink viselkedésének megfigyelésével megállapítható, melyik fejlettségi szint a leginkább jellemző rájuk. Célszerű elvánnunk, hogy tanulmányaik alatt legalább egyet lépjenek előre KÖHLBERG létráján. Ebben a tekintetben érdekes élményt jelenthet az önvizsgálat. Mások besorolása az egyes kategóriákba kerüle főleg azok, amelyeknek a környezetükben előkérem nem feladatunk. Ez a kényes terület gyakorlati döntések, jó példák alapján fejleszthető.

3.3.2.4 A tudásszerzés komfortja

Miközben abóból a meggyőződésből indulunk ki, hogy a modern IKT (információs és kommunikációs technológia) tantermi, iskolai alkalmazása csakis megkönnyítheti a tanulás folyamatát a diákok számára, nem számolunk azzal, hogy az iskolatípustól, az iskola presztízsétől, beiskolázási bázisától függően nagyon eltérően szociálizált diákokkal kell foglalkoznunk. Az idő múlásával várhatóan a tanulók egyre nagyobb része számára váló természetessé az IKT eszközök alkalmazása, ugyanakkor azok, akik otthon nem találkoznak ezekkel, azok számára komoly kihívás esetleg idegenkedést, szorongást kiváltó lehet ezek használata. Ennek oldására alkalmas lehet a tanulócsoportok közötti párbeszéd (TÓTH-PENTÉLENYI, 2007).

A tananyag önálló feldolgozásához – melyet a modern IKT eszközök segítségével is szorgalmaznánk – a tanulói motiváltság elengedhetetlen. A motivált tanuló számára a tanulási környezet sajátosságai kevésbé meghatározóak, motivációs erők esetén viszont a pedagógussal való kontaktus, a gyakori személyes visszacsatolás jelenthet megoldást. Az esetekben korábbi kudarcokban, nem racionális feltevőkben meg lehet találni az idegenkedés okát. Alapjában véve az ember kívánenci az újra.

Introvertált tanulók esetében jó eredményt várhatunk a külvilág kizárásával egyedül végezhető, otthoni „bőngészős” feladatoktól. Extravertáltaknál a csoportban végzendő ismeretszerző, a többiek előtt prezentálható feladatoktól remélhetünk jobb teljesítményt. Természetesen mindkét csoportnak gyakorlatot kell szerezni a másik területen is.

A modern IKT eszközök megjelenésének köszönhetően a tudásszerzés számos tekintetben könnyebbé, vonzóbbá válik, lehetőségei kiszélesednek, ezeket mutatja be az alábbi táblázat.

<table>
<thead>
<tr>
<th>Problémák az IKT eszközök nélküli tanulási környezettel</th>
<th>Legyőzendő akadályok</th>
<th>Az IKT eszközök nyújtotta lehetőségek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az információ terjedésének sebessége lassú. A frissítések átutfutási ideje hosszú.</td>
<td>Időbeli távolság</td>
<td>Az új információk szinte azonnal hozzáférhetők.</td>
</tr>
<tr>
<td>A dolgok megismerése időben korábban készült leírások, képek, filmek, stb. alapján lehetséges.</td>
<td>Az információk nyújtotta lehetőségek</td>
<td>A jelenségek, folyamatok megfigyelésére jelen időben van lehetőség. Pl.: A gólyafészek közélén belül szerezelt web kamerával figyelhető a madarak élete, fejlődése.</td>
</tr>
<tr>
<td>A fizikailag távol levő források – pl. könyvek, folyóiratok, stb. – beszerzése nehézséges, hosszú időt vesz igénybe.</td>
<td>Fizikai távolság</td>
<td>A tájékozódás nem csak a fizikailag elérhető adatbázisokban lehetőséges.</td>
</tr>
<tr>
<td>A fizikai modell készítése nehézséges, több tárgykörben megoldhatatlan.</td>
<td>Modellezési nehézségek</td>
<td>Mikro-, nanojelenségek, folyamatok, technológiák megragadhatók.</td>
</tr>
<tr>
<td>Nehéz kapcsolatot teremteni azokkal a tudományos, szakmai körökkel, melyek révén az új eredmények megismerhetők.</td>
<td>A kapcsolatokkal való rendelkezés kívánság</td>
<td>Az emberi tevékenység, a gazdasági, társadalmi jelenségek modellezhetők, így a diákok elvezethetők a következményekig.</td>
</tr>
<tr>
<td>A források korlátozottan elérhetők.</td>
<td>Az információkeresés nehézségei</td>
<td>A kapcsolat bárkihoz felfelé. Pl. kutatókkal, szakemberekkel, más diákokkal, tanárokkal.</td>
</tr>
<tr>
<td>Kevesebb a diákok meglévő konstrukcióhoz kapcsolható elem.</td>
<td>A tananyag és a diákok közötti távolság</td>
<td>A diákok bekapcsolódhatnak a tanultak valóságban való megfigyelésébe, részt vehetnek a tananyag számmukra befogadható formáinak megtalálásában, kidolgozásában.</td>
</tr>
</tbody>
</table>
A modern eszközök, az elektronikus tananyagok alkalmazása a felfedezés örömével és izgalmával segíti a figyelem fenntartását és az egyedi kognitív térképek, mentális modellek kialakítását. Mivel az IKT eszközök célja, hogy a diákok és diákcsoportok aktivabban vegyenek részt tudásuk konstruálásában, a tananyag feldolgozásában, ezért több lehetőség nyilik a kreativitás kibontakozásának. Több lehetséges jó megoldás születhet a feladatokban. Természetesen a kreatív válaszok, megoldások csak akkor elfogadhatóak – az ún. reál tantárgyakra ez fokozottan érvényes –, ha a valóság lehetséges és érvényes reprezentációi.

A kettős feldolgozás elmélet szerint az agy két különböző csatornán és módon dolgozza fel e két modalitás által bejövő információit, amelyek ezért kiegészíthetik egymást összekapcsolódásuk révén. Az IKT eszközök megfelelő alkalmazásával tehát igyekeznünk kell ezt a párhuzamosságot megvalósítani a hatékony tanulás.

89.ábra: A kettős feldolgozás modellje (PAIVIO nyomán)
elérése érdekében. A tanultak láttatása, kézzelfoghatóvá tétele Comenius mun-
kássága óta cél, de nagyságrendi előrelépést az új technológiák használata igér
ez a területen is.

A technika rengeteg információt, feladatot és lehetőséget kínál. Újdonsült mun-
kaeszközünk, a számítógép, éjjel-nappal működik, nincs megállás. Használhatjuk
épülésünkre, de kihasználhatjuk önmagunkat a végsőkig. Nekünk kell humánus
keretek közé szelidíteni és okosan használni.

Az ember alapvető pszichés igényei évszázadok alatt is kevéset változnak. Csak
a racionalitást és az érzelmeket kiegyensúlyozottan megélő, az értékrendjével
összhangra találó, pozitív jövőképét hittel építő ember érezheti magát komforto-
san az iskolában és az iskolán kívül is. A fiatalok ilyen irányú fejlesztésének lénye-
ges színtere az iskola. Az új technikai elemek beépítése során törekedni kell arra,
 hogy a környezet harmonikus részvé vájanak. A tanár és a diá k számára is meg
kell találni a rendezett kapcsolódási felületeket, a kapcsolat stílusát, újra kell ér-
telmezni a szerepeket. A kapcsolatokat is folyamatosan harmonizálni, fejleszteni
kell. Különben esetlegessé, törékennyé válók a közösség, romlik a közérzet és a
teljesítőképesség.
KÁRPÁTI ANDREA (2001): Az informatikai kompetencia fejlesztése. Új Pedagógiai Szemle,7-8., 63-68. old.

Felhasznált irodalom

Cs í k s e nT Mi h á l y i Mi h á l y (2001): Flow - Az áramlat - A tökéletes élmény pszichológiája. Budapest: Akadémiai Kiadó
Hu n y a Má rTa, da nCs ó Tü n d e, Ta rTs a y n é néMeTh nó r a (2006) Informatikai eszközök használata a tanítási órákon. Új Pedagógiai Szemle, 7-8, 163-177. old.
Ká rpá Ti an d r e a (1999): Digitális pedagógia – a számítógéppel segített tanulás módszerei. Új Pedagógiai Szemle, 4., 76-89. old.
Ká rpá Ti an d r e a (2001): Az informatikai kompetencia fejlesztése. Új Pedagógiai Szemle,7-8., 63-68. old.
Microsoft Class Server ismertető és tanári telepítő. (é. n.) http://www.almasi.hu/%C3%9Atmutat%C3%B3k/Document%20Library/Microsoft%20Class%20Server%20ismertet%C5%91%20%-20tan%C3%A1r%20telep%C3%ADt%C5%91.pdf
MOLNÁR PÁL, KÁRPTÁTI ANDREA (megjelenés alatt): Kollaboratív vitatérképezés, mint trialogikus tanulás. Új Pedagógiai Szemle, közlésre benyújtva 2008. július
PÁJTÖKNE TÁRÓ ÍLONA (2008): Digitális taneszközök a földrajz tanításában. ELTE TTK, PhD értekezés.
http://elearning.sztaki.hu/repository/13.pdf

PETHŐ BALÁZS, VIDOR RÓBERT (2004): A Microsoft Learning Gateway bevezetése Magyarországon. Iskolakultúra, 12, 140-144. old.

VARGA KORNEL (2004): Az informatika alkalmazása az oktatásban, egy működő keretrendszer kapcsán. Iskolakultúra, 12, 15-26. oldal

TÓTH PÉTER (2005): A problémaegyedő gondolkodás jelentősége és szerepe az informatikai általános műveltség iskolai fejlesztésében, PhD értekezés ELTE PPK Neveléstudományi Doktori Iskola Budapest

A 21. század iskolája

http://www.staff.u-szeged.hu/~gymolnar/sombor_2.pdf

http://tmt.omikk.bme.hu/show_news.html?id=3879&issue_id=460

NAGY SÁNDOR: Az oktatás folyamata és módszerei. Volos Kiadó, Mogyoród, 1997, p188

SHAHEEN E. LAKHAN ÉS KAVITA JHUNJHUNWALA: Open Source Software in Education *EDUCAUSE Quarterly*, vol. 31, no. 2 (April–June 2008)

http://ipszilon.iif.hu/oa/oa-holl.pdf

222
Wikipedia. Mi a szabad szoftver?
ISBN: 0761919465
Freie Universität, Berlin.
Educational Assessment, 1. 2. sz. 153-173.

Budapest Műszaki Főiskola, Budapest

Gondolat Kiadó, Budapest

Gondolat Kiadó, Budapest

Budapesti Nevelő XII. évf. 3-4. szám, p5-28